Citation: JING Xu-liang, WANG Zhi-qing, YU Zhong-liang, FANG Yi-tian. Multi-circulated gasification reactivity of coal char and its microstructure analysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(8): 917-921. shu

Multi-circulated gasification reactivity of coal char and its microstructure analysis

  • Corresponding author: FANG Yi-tian, 
  • Received Date: 29 April 2013
    Available Online: 17 June 2013

    Fund Project: 国家自然科学基金(21106173) (21106173) 山西省自然科学基金(2013021007-2) (2013021007-2) 中国科学院战略性先导科技专项(XDA07050100) (XDA07050100) 中国科学院山西煤炭化学研究所青年人才基金(2011SQNRC). (2011SQNRC)

  • To investigate the variation in gasification reactivity and microstructure of char from the multi-circulation fluidized bed gasifier, 3 chars from different rank coals were gasified in a simulated multi-circulated reactor (rapid heating-up fixed bed). The carbon conversion was calculated from the weight of residues, and the structure was analyzed by pore and XRD analyzer. The results show that with the increase of cycle time, the carbon conversion of low rank HLH lignite char increases while that of SM bituminous and JC anthracite chars decrease. The evolutions of BET surface area and micropore area have a peak value with the circulate time. The variation of graphitization is similar with the carbon conversion, which can be considered as the key factor to determine the carbon conversion.
  • 加载中
    1. [1]

      [1] JING X L, WANG Z Q, YU Z L, ZHANG Q, LI C Y, FANG Y T. Experimental and kinetic investigations of CO2 gasification of fine chars separated from a pilot-scale fluidized-bed gasifier [J]. Energy Fuels, 2013, 27(5): 2422-2430.

    2. [2]

      [2] VÁRHEGYI G, SEBESTYN Z, CZGNY Z, LEZSOVITS F, KÖNCZÖL S. Combustion kinetics of biomass materials in the kinetic regime[J]. Energy Fuels, 2012, 26(2): 1323-1335.

    3. [3]

      [3] MONDAL P, DANG G S, GARG M O. Syngas production through gasification and cleanup for downstream applications-Recent developments[J]. Fuel Process Technol, 2011, 92(8): 1395-1410.

    4. [4]

      [4] REN H J, ZHANG Y Q, FANG Y T, WANG Y. Co-gasification behavior of meat and bone meal char and coal char[J]. Fuel Process Technol, 2011, 92(3), 298-307.

    5. [5]

      [5] 张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究—水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269. (ZHNAG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification—comparison of reactivity between steam and CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 265-269.)

    6. [6]

      [6] WU S Y, GU J, ZHANG X, WU Y Q, GAO J S. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008, 22(1): 199-206.

    7. [7]

      [7] OCHOA J, CASSANELLO M, BONELLI P, CUKIERMAN A. CO2 gasification of Argentinean coal chars: a kinetic characterization[J]. Fuel Process Technol, 2001, 74(3): 161-176.

    8. [8]

      [8] 黄艳琴, 苏德仁, 阴秀丽, 吴创之, 马隆龙. 木粉焦CO2和H2O气化过程中孔结构及反应性的变化[J]. 燃料化学学报, 2011, 39(6): 432-437. (HUANG Yan-qin, SU De-ren, YIN Xiu-li, WU Chuang-zhi, MA Long-long. Changes of pore structure and reactivity during CO2 and H2O gasification of fir char[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 432-437.)

    9. [9]

      [9] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国刚. 气化活性与孔比表面积的关系[J]. 煤炭转化, 2003, 26(3): 45-48. (LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Relationship of gasification activity and pore structure[J]. Coal Conversion, 2003, 26(3): 45-48.)

    10. [10]

      [10] 朱子彬, 马智华, 林石英, 平户瑞穗, 堀尾正靱. 高温下煤焦气化反应特性(Ⅱ): 细孔构造对煤焦气化反应的影响[J]. 化工学报, 1994, 45(2): 155-161. (ZHU Zi-bin, MA Zhi-hua, LIN Shi-ying, MITSUHO H, MASAYUKI H. Characteristics of coal char gasification at high temperature(Ⅱ): The effect of pore structure on coal char gasification[J]. Journal of Chemical Industry and Engineering (China), 1994, 45(2): 155-161.

    11. [11]

      [11] WANG B, SUN L S, SU S, XIANG J, HU S, FEI H. Char structural evolution during pyrolysis and its influence on combustion reactivity in air and oxy-fuel conditions[J]. Energy Fuels, 2012, 26(3): 1565-1574.

    12. [12]

      [12] BLANCO LPEZ M C, MARTINEZ-ALONSO A, TASCN J M D. N2 and CO2 adsorption on activated carbon fibres prepared from Nomex chars[J]. Carbon, 2000, 38(8): 1177-1182.

    13. [13]

      [13] 赵冰, 周志杰, 丁路, 于广锁. 快速热处理石油焦与煤的微观结构变化及气化活性分析[J]. 燃料化学学报, 2013, 41(1): 40-45. (ZHAO Bing, ZHOU Zhi-jie, DING Lu, YU Guang-suo. Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 40-45.)

  • 加载中
    1. [1]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

Metrics
  • PDF Downloads(0)
  • Abstract views(466)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return