Citation: WANG Yan, WANG Wen-li, CHEN Yue-xian, ZHENG Jia-jun, LI Rui-feng. Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(7): 875-882. shu

Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst

  • Corresponding author: LI Rui-feng, 
  • Received Date: 11 April 2013
    Available Online: 9 June 2013

    Fund Project: National Natural Science Foundation of China (21246003) (21246003)Research Fund for Doctoral Program of Higher Education (20121402120011). (20121402120011)

  • Hierarchically porous composite zeolite (BFZ, with Beta zeolite cores and Y zeolite polycrystalline shells) was employed as the methanol dehydration catalyst in the direct synthesis of dimethyl ether (DME) from syngas in a fixed-bed reactor. The correlation between the catalytic activity and the textural and acid properties of the dehydration catalyst was investigated. The results indicate that the composite zeolite of H-form (HBFZ) exhibits moderate acid strength and meso-porosity, which is responsible for the high activity of CO hydrogenation. For the direct synthesis of DME from CO hydrogenation over the physical mixture of commercial CuO/ZnO/Al2O3 catalyst (CZA) and the H-form zeolites (HBFZ or HY), CZA/HBFZ exhibits higher activity and stability than CZA/HY. Under 250 ℃, 5.0 MPa and 1 500 h-1, the conversion of CO and the selectivity to DME over CZA/HBFZ achieve 94.2% and 67.9%, respectively.
  • 加载中
    1. [1]

      [1] FAUNGNAWAKIJ K, FUKUNAGA T, KIKUCHI R, EGUCHI K. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether[J]. J Catal, 2008, 256(1): 37-44.

    2. [2]

      [2] CHEN Y, SHAO Z, XU N. Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst[J]. J Nat Gas Chem, 2008, 17(1): 75-80.

    3. [3]

      [3] ARKHAROV A M, GLUKHOV S D, GREKHOV L V, ZHERDEV A A, IVASHCHENKO N A, KALININ D N. SHARABURIN A V, ALEKSANDROV A A. Use of dimethyl ether as a motor fuel and a refrigerant[J]. Chem Pet Eng, 2003, 39(5): 330-336.

    4. [4]

      [4] PENG X D, WANG A W, TOSELAND B A, TIJM P J A. Single-step syngas-to-dimethyl ether processes for optimal productivity, minimal emissions, and natural gas-derived syngas[J]. Ind Eng Chem Res, 1999, 38(11): 4381-4388.

    5. [5]

      [5] NAIK S P, DU H, WAN H, BUI V, MILLER J D, ZMIERCZAK W W. A comparative study of ZnO-CuO-Al2O3/SiO2-Al2O3 composite and hybrid catalysts for direct synthesis of dimethyl ether from syngas[J]. Ind Eng Chem Res, 2008, 47(23): 9791-9794.

    6. [6]

      [6] FLORES J H, PEIXOTO D P B, APPEL L G, DE AVILLEZ R R, DA SILVA M I P. The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas[J]. Catal Today, 2011, 172(1): 218-225.

    7. [7]

      [7] RAMOS F S, BORGES L E P, MONTEIRO J L, FRAGA M A, SOUSA-AGUIAR E F, APPEL L G. Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures[J]. Catal Today, 2005, 101(1): 39-44.

    8. [8]

      [8] QI G X, ZHENG X M, FEI J H, HOU Z Y. A novel catalyst for DME synthesis from CO hydrogenation: 1. Activity, structure and surface properties[J], J Mol Catal A: Chem, 2001, 176(1/2): 195-203.

    9. [9]

      [9] SIERRA I, EREA J, AGUAYO A T, ARANDES J M, BILBAO J. Regeneration of CuO-ZnO-Al2O3/[WTBZ]γ[WTB1]-Al2O3 catalyst in the direct synthesis of dimethyl ether[J]. Appl Catal B: Environ, 2010, 94(1/2): 108-116.

    10. [10]

      [10] ZUO Y Z, ZHANG Q, AN X, HAN M H, WANG T F, WANG J F, JIN Y. Single-step dimethyl ether synthesis on a Cu/ZnO/Al2O3/ZrO2+[WTBZ]γ[WTB1]-Al2O3 bifunctional catalyst in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 102-107.

    11. [11]

      [11] TAKEGUCHI T, YANAGISAWA K I, INUI T, INOUE M. Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids[J]. Appl Catal A: Gen, 2000, 192(2): 201-209.

    12. [12]

      [12] KIM J H, PARK M J, KIM S J, JOO O S, JUNG K D. DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5[J]. Appl Catal A: Gen, 2004, 264(1): 37-41.

    13. [13]

      [13] SUN K, LU W, QIU F, LIU S, XU X. Direct synthesis of DME over bifunctional catalyst: surface properties and catalytic performance[J]. Appl Catal A: Gen, 2003, 252(2): 243-249.

    14. [14]

      [14] GE Q, HUANG Y, QIU F, LI S. Bifunctional catalysts for conversion of synthesis gas to dimethyl ether[J]. Appl Catal A: Gen, 1998, 167(1): 23-30.

    15. [15]

      [15] MAO D, XIA J, CHEN Q, LU G. Highly effective conversion of syngas to dimethyl ether over the hybrid catalysts containing high-silica HMCM-22 zeolites[J]. Catal Commun, 2009, 10(5): 620-624.

    16. [16]

      [16] NAIK S P, BUI V, RYU T, MILLER J D, ZMIERCZAK W. Al-MCM-41 as methanol dehydration catalyst[J]. Appl Catal A: Gen, 2010, 381(1/2): 183-190.

    17. [17]

      [17] SAI PRASAD P S, BAE J W, KANG S H, LEE Y J, JUN K W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the other zeolites[J]. Fuel Process Technol, 2008, 89(12): 1281-1286.

    18. [18]

      [18] MAO D, YAN W, XIA J, ZHANG B, LU G. The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified [WTBZ]γ[WTB1]-alumina as methanol dehydration components[J]. J Mol Catal A: Chem , 2006, 250(1/2): 138-144.

    19. [19]

      [19] KANG S H, BAE J W, JUN K W, POTDAR H S. Dimethyl ether synthesis from syngas over the composite catalysts of Cu-ZnO-Al2O3/Zr-modified zeolites[J]. Catal Commun, 2008, 9(10): 2035-2039.

    20. [20]

      [20] XIA J, MAO D, ZHANG B, CHEN Q, TANG Y. One-step synthesis of dimethyl ether from syngas with Fe-modified zeolite ZSM-5 as dehydration catalyst[J]. Catal Lett, 2004, 98(4): 235-240.

    21. [21]

      [21] JIN D, ZHU B, HOU Z, FEI J, LOU H, ZHENG X. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts[J]. Fuel, 2007, 86(17/18): 2707-2713.

    22. [22]

      [22] TANG Q, XU H, ZHENG Y, WANG J, LI H, ZHANG J. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves[J]. Appl Catal A: Gen, 2012, 413-414: 36-42.

    23. [23]

      [23] ZHENG J, ZENG Q, YI Y, WANG Y, MA J, QIN B, ZHANG X, SUN W, LI R. The hierarchical effects of zeolite composites in catalysis[J]. Catal Today, 2011, 168(1): 124-132.

    24. [24]

      [24] ZHENG J, ZENG Q, ZHANG Y, WANG Y, MA J, ZHANG X, SUN W, LI R. Hierarchical porous zeolite composite with a core-shell structure fabricated using [WTBZ]β[WTB1]-zeolite crystals as nutrients as well as cores[J]. Chem Mater, 2010, 22(22): 6065-6074.

    25. [25]

      [25] ZHENG J, ZHANG X, WANG Y, BAI Y, SUN W, LI R. Synthesis and catalytic performance of a bi-phase core-shell zeolite composite[J]. J Porous Mater, 2009, 16(6): 731-736.

    26. [26]

      [26] PREZ-RAMREZ J, VERBOEKEND D, BONILLA A, ABELL[WTBZ][WTB1] S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Adv Funct Mater, 2009, 19(24): 3972-3979.

    27. [27]

      [27] KATADA N, IGI H, KIM J H. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B, 1997, 101(31): 5969-5977.

    28. [28]

      [28] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2): 347-354.

    29. [29]

      [29] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 6(2): 147-152.

    30. [30]

      [30] SEO C W, JUNG K D, LEE K Y, YOO K S. Dehydration of methanol over nordstrandite based catalysts for dimethyl ether synthesis[J]. J Ind Eng Chem, 2009, 25(5): 649-652.

    31. [31]

      [31] ROWNAGHI A A, REZAEI F, STANTE M, HEDLUND J. Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals[J]. Appl Catal B: Environ, 2012, 119-120: 56-61.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    15. [15]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    16. [16]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(434)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return