Citation:
DING Ming-yue, XIONG Wei, TU Jun-ling, LI Yu-ping, WANG Tie-jun, MA Long-long. Effect of calcination temperature on Ni-Mg based monolithic catalyst for biomass gas reforming reaction[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(7): 862-867.
-
The Ni-Mg based monolithic catalyst was prepared by impregnation method. Effects of calcination temperature on microstructure and biomass gases reforming performances of the catalyst were investigated. The results indicated that there was the formation of NiO and NiMgO2 in the catalyst during calcination at different temperatures. Compared to other calcination temperatures, calcinating at 650 ℃ facilitated the dispersion of NiO on the cordierite and the increase of active sites. Under the dry reforming condition, conversion of CH4 and CO2 increased first, and then decreased gradually with the increase of calcination temperature. The CH4 and CO2 conversion reached the highest value as the calcination temperature is 650 ℃. A similar trend was observed for the yield of H2 and CO. Under the steam reforming condition, increasing calcination temperature promoted water gas shift reaction. In addition, changing calcination temperature may adjust selectively the ratio of H2/CO under the steam reforming condition.
-
-
-
[1]
[1] 官巧燕, 廖福霖, 罗栋粲. 国内外生物质能发展综述[J]. 农机化研究, 2007, (11): 20-24. (GUAN Qiao-yan, LIAO Fu-lin, LUO Dong-can. Review on the development of bioenergy in China and the world[J]. Journal of Agricultural Mechanization Research, 2007, (11): 20-24.)
-
[2]
[2] 林伟刚, 宋文立. 丹麦生物质发电的现状和研究发展趋势[J]. 燃料化学学报, 2005, 33(6): 650-655. (LIN Wei-gang, SONG Wen-li. Power production from biomass in Denmark[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 650-655. )
-
[3]
[3] 汪俊锋, 常杰, 阴秀丽, 付严. 生物质气催化合成甲醇的研究[J]. 燃料化学学报, 2005, 33(1): 58-61. (WANG Jun-feng, CHANG Jie, YIN Xiu-li, FU Yan. Catalytic synthesis of methanol from biomass-derived syngas[J]. Journal of Fuel Chemistry and Technology, 2005, 33(1): 58-61.)
-
[4]
[4] CORELLA J, SANZ A. Modeling circulating fluidized bed biomass gasifiers: A pseudo-rigorous model for stationary state[J]. Fuel Process Technol, 2005, 86(9): 1021-1053.
-
[5]
[5] KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, YAMAZAKI Y, OMATA K, NAGAO D, KONNO M, YAMADA M. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas[J]. Appl Catal A: Gen, 2011, 395(1/2): 129-137.
-
[6]
[6] DELGADO J, AZNAR M P, CORELLA J. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO and CaO-MgO for hot gas cleaning[J]. Ind Eng Chem Res, 1997, 36(5): 1535-1543.
-
[7]
[7] ENCINAR J M, BELTRN F J, RAMIRO A, GONZLEZ J F. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables[J]. Fuel Process Technol, 1998, 55(3): 219-233.
-
[8]
[8] AZNAR M P, COREL J, LAHO Z J. Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalyst[J]. Ind Eng Chem Res, 1993, 32(1): 1-10
-
[9]
[9] BAKER E G, MUDGE L K, WILCOX W A. Proceedings of conference on developments in thermochemical biomass conversion. Blackie Academic & Professional, Banff, Canada, 1996.
-
[10]
[10] YAMAGUCHI T, YAMASAKI K, YOSHIDA O. Deactivation and regeneration of catalyst for steam gasification of wood to methanol synthesis gas[J]. Ind Eng Chem Pro Res Dev, 1986, 25(2): 239-243.
-
[11]
[11] RICHARDSON S M, GRAY M R. Enhancement of residue hydroprocessing catalysts by doping with alkali metals[J]. Energy Fuels, 1997, 11(6): 1119-1126.
-
[12]
[12] BANGALA D N, ABATZOGLOU N, CHORNET E. Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2 and La2O3[J]. AIChE J, 1998, 44(4): 927-936.
-
[13]
[13] EDVINSSON A R, NYSTREM M, SELLIN A. Development of a monolith-based process for H2O2 production: From idea to large-scale implementation[J]. Catal Today, 2001, 69(1/4): 247-252.
-
[14]
[14] LIU W, WILLIAM P A, SORENSEN C M, BOGER T. Monolith reactor for the dehydrogenation of ethylbenzene to styrene[J]. Ind Eng Chem Res, 2002, 41(13): 3131-3138.
-
[15]
[15] QIU M, LI Y, WANG T, ZHANG Q, WANG C, ZHANG X, WU C, MA L, LI K. Upgrading biomass fuel gas by reforming over Ni-MgO/γ-Al2O3 cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer[J]. Appl Energy, 2011, 90(1): 3-10.
-
[16]
[16] DJAIDJA A, LIBS S, KIENNEMANN A, BARAMA A. Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts[J]. Catal Today, 2006, 113(3/4): 194-200.
-
[17]
[17] BRADFORD M C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Appl Catal A: Gen, 1996, 142(1): 73-96.
-
[1]
-
-
-
[1]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[5]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[8]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[9]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[10]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[11]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[12]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[14]
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
-
[15]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[16]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
-
[17]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[18]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[19]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[20]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(356)
- HTML views(27)