Citation: HU Hui-min, CHENG Le-ming, ZHANG Rong, BI Ji-cheng. Effect of CaO on decarboxylation of stearic acid over Pt/C catalyst[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(7): 850-855. shu

Effect of CaO on decarboxylation of stearic acid over Pt/C catalyst

  • Corresponding author: ZHANG Rong, 
  • Received Date: 19 March 2013
    Available Online: 27 May 2013

    Fund Project: 国家自然科学基金青年科学基金(21006123). (21006123)

  • The effects of CaO addition and temperature on decarboxylation of stearic acid over Pt/C catalyst in subcritical water were investigated. The conversion of stearic acid increased dramatically, while the selectivity to heptadecane hardly changed with the addition of CaO. At 330 ℃ the conversion of stearic acid reached a maximum with Ca/stearic mol ratio of 0.5. Moreover, Pt/C catalyzed decarboxylation of stearic acid in subcritical water exhibited first-order kinetics. It was proposed that dissociative stearic acid was adsorbed on Pt/C catalyst, forming surface octadecanoate species and adsorbed H. The C-C bond dissociated via H insertion, resulting in the formation of heptadecane and CO2. The addition of CaO promoted the dissociation of stearic acid. As a result, the amount of adsorbed octadecanoate increased and the reaction was accelerated.
  • 加载中
    1. [1]

      [1] 鹿清华, 朱青, 何祚云. 我国生物柴油原料可获性及成本分析[J]. 当代石油石化, 2010, (9): 7-10. (LU Qing-hua, ZHU Qing, HE Zuo-yun. The availability and cost of biodiesel material in china[J]. Petroleum & Petrochemical Today, 2010, (9): 7-10.)

    2. [2]

      [2] KNOTHE G. A technical evaluation of biodiesel from vegetable oils vs. algae. will algae-derived biodiesel perform?[J]. Green Chem, 2011, 13(11): 3048-3065.

    3. [3]

      [3] PATIL P D, GUDE V G, DENG S G. Transesterification of camelina sativa oil using supercritical and subcritical methanol with cosolvents[J]. Energy Fuels, 2010, 24(2): 746-751.

    4. [4]

      [4] LEVINE R B, PINNARAT T, SAVAGE P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification[J]. Energy Fuels, 2010, 24(9): 5235-5243.

    5. [5]

      [5] BERENBLYUM A S, DANYUSHEVSKY V Y, KATSMAN E A, PODOPLELOVA T A, FLID V R. Production of engine fuels from inedible vegetable oils and fats[J]. Petrol Chem, 2010, 50(4): 305-311.

    6. [6]

      [6] CARIOCA J O B, HILUY FILHO J J, LEAL M R L V, MACAMBIRA F S. The hard choice for alternative biofuels to diesel in Brazil[J]. Biotechnol Adv, 2009, 27(6): 1043-1050.

    7. [7]

      [7] DEMIRBAS A. Competitive liquid biofuels from biomass[J]. Appl Energy, 2011, 88(1): 17-28.

    8. [8]

      [8] SCHWAB A W, DYKSTRA G J, SELKE E, SORENSON S C,PRYDE E H. Diesel fuel from thermal decomposition of soybean oil[J]. J Amer Oil Chem Soc, 1988, 65(11): 1781-1786.

    9. [9]

      [9] WIGGERS V R, WISNIEWSKI A Jr, MADUREIRA L A S, CHIVANGA BARROS A A, MEIER H F. Biofuels from waste fish oil pyrolysis: continuous production in a pilot plant[J]. Fuel, 2009, 88(11): 2135-2141.

    10. [10]

      [10] WIGGERS V R, MEIER H F, WISNIEWSKI A Jr, CHIVANGA BARROS A A, WOLF MACIEL M R. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study[J]. Bioresour Technol, 2009, 100(24): 6570-6577.

    11. [11]

      [11] SNRE M, KUBICKOVA I, MAKI-ARVELA P, ERNEN K, MURZIN D Y. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Ind Eng Chem Res, 2006, 45(16): 5708-5715.

    12. [12]

      [12] LESTARI S, MKI-ARVELA P, ERNEN K, BELTRAMINI J, MAX LU G Q, MURZIN D Y. Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts[J]. Catal Lett, 2010, 134(3/4): 250-257.

    13. [13]

      [13] WATANABE M, IIDA T, INOMATA H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water[J]. Energy Conv Manag, 2006, 47(18/19): 3344-3350.

    14. [14]

      [14] FU J, LU X Y, SAVAGE P E.Catalytic hydrothermal deoxygenation of palmitic acid[J]. Energy Environ Sci, 2010, 3(3): 311-317.

    15. [15]

      [15] 苗兴芬, 朱命喜, 徐文平, 申宏波, 杜升伟, 裴宇峰, 陈庆山, 胡国华. 大豆脂肪酸组分的快速气相色谱分析[J]. 大豆科学, 2010, 29(2): 358-360. (MIAO Xing-fen, ZHU Ming-xi, XU Wen-ping, SHEN Hong-bo, DU Sheng-wei, PEI Yu-feng, CHEN Qing-shan, HU Guo-hua. Rapid determination on fatty acid content by gas chromatography in soybean[J]. Soybean Science, 2010, 29(2): 358-360.)

    16. [16]

      [16] MARCHIONNI G, PETRICCI S, SPATARO G, PEZZIN G. A study of the thermal decarboxylation of three perfluoropolyether salts[J]. J Flour Chem, 2003, 124(2): 123-130.

    17. [17]

      [17] LI J, BRILL T B. Spectroscopy of hydrothermal reactions 23: The effect of OH substitution on the rates and mechanisms of decarboxylation of benzoic acid[J]. J Phys Chem A, 2003, 107(15): 2667-2673.

    18. [18]

      [18] LAMB H.H, SREMANIAK L, WHITTEN J L. Reaction pathways for butanoic acid decarboxylation on the (111) surface of a Pd nanoparticle[J]. Surf Sci, 2013, 607(25): 130-137.

    19. [19]

      [19] MAIER W F, ROTH W, THIES I, RAGU SCHLEYER P V. Gas phase decarboxylation of carboxylic acids[J]. Chem Ber, 1982, 115(2): 808-812.

    20. [20]

      [20] GEATCHES D L, CLARK S J, GREENWELL H C. Role of clay minerals in oil-forming reactions[J]. J Phys Chem A, 2010, 114(10): 3569-3575.

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

Metrics
  • PDF Downloads(0)
  • Abstract views(883)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return