Citation: BAI Jin, KONG Ling-xue, LI Huai-zhu, GUO Zhen-xing, BAI Zong-qing, YUCHI Wei, LI Wen. Adjustment in high temperature flow property of ash from Shanxi typical anthracite[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(7): 805-813. shu

Adjustment in high temperature flow property of ash from Shanxi typical anthracite

  • Corresponding author: BAI Jin, 
  • Received Date: 3 June 2013
    Available Online: 27 June 2013

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB227003) (973计划, 2010CB227003) 国家自然科学青年基金(21006121) (21006121) 国家自然科学基金委员会与神华集团有限责任公司联合资助(U1261209). (U1261209)

  • To meet the requirement of gasification of Shanxi anthracites with slag tapping, the effects of CaO, MgO and Fe2O3 flux on the improvement of ash fusibility and viscosity-temperature property were evaluated and compared. The results show that for high silicon and aluminum coal ash with the Si/Al ratio from 1.2 to 2.0, the order of fluxing effect is MgO > CaO > Fe2O3. The difference of fluxing effect is caused by the different stable minerals formed at high temperature. For three different fluxes, the relation between the flow temperature (FT) and the liquidus temperature (tliq) is determined. And a linear relationship between CaO or Fe2O3 content and FT is obtained as follows: FT= 1 593-9.573 × wCaO (R2=0.942 9) and FT = 1 576-8.330 6 × wFe2O3 (R2=0.955 9), which are useful to guide the addition of flux. CaO, MgO and Fe2O3 show different effects on the viscosity-temperature character. Judging from the viscosity value and the temperature of critical viscosity, CaO displays the best performance as a flux. The different electronegativity of Ca2+, Mg2+, Fe2+ and the formation of different minerals with addition of CaO, MgO and Fe2O3 at high temperature are responsible for the various influences of flux on the viscosity value. Small ion radius of Mg2+ and Fe2+ and the possible crystallization of iron at high temperature are the reasons for the higher temperature of critical viscosity.
  • 加载中
    1. [1]

      [1] 陈鹏. 中国煤炭性质、分类和利用(第二版)[M]. 北京: 化学工业出版社, 2011. (CHEN Peng. Property, classification and utilization of Chinese coal(2nd Edition)[M]. Beijing: Chemical Industry Press, 2011.)

    2. [2]

      [2] 王洋, 房倚天, 黄戒介, 马小云, 吴晋沪. 煤气化技术的发展: 煤气化过程的分析和选择[J]. 东莞理工学院学报, 2006, 13(4): 93-100. (WANG Yang, FANG Yi-tian, HUANG Jie-jie, MA Xiao-yun, WU Jin-hu. Development of coal gasification technology: The process analysis and selection[J]. Journal of Dongguan University of Technology, 2006, 13(4): 93-100.)

    3. [3]

      [3] WILLIAMS A, POURKASHANIAN M, JONES J M. Combustion and gasification of coal[M]. New York: Taylor&Francis, 2000.

    4. [4]

      [4] 李文, 白进. 煤的灰化学[M]. 北京: 科学出版社, 2013. (LI Wen, BAI Jin. Chemistry of ash from coal[M]. Beijing: Science Press, 2013.)

    5. [5]

      [5] HUGGINS F E, KOSMACK D A, HUFFMAN G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981, 60(7): 577-584.

    6. [6]

      [6] JAK E. Prediction of coal ash fusion temperatures with the FACT thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668.

    7. [7]

      [7] SONG W, TANG L, ZHU X, WU Y, ZHU Z, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009, 23(4): 1990-1997.

    8. [8]

      [8] 魏雅娟, 李寒旭. 高温弱还原性气氛下MgO的助熔机理[J]. 安徽理工大学学报(自然科学版), 2008, 28(4): 74-77. (WEI Ya-juan, LI Han-xu. Melting behavior of flux MgO in high temperature and less reductive atmosphere[J]. Journal of Anhui University of Science and Technology (Natural Science), 2008, 28(4): 74-77.)

    9. [9]

      [9] 李继炳, 沈本贤, 李寒旭, 赵基钢, 王基铭. 铁基助熔剂对皖北刘桥二矿煤的灰熔融特性影响研究[J]. 燃料化学学报, 2009, 37(3): 262-265. (LI Ji-bing, SHEN Ben-xian, LI Han-xu, ZHAO Ji-gang, WANG Ji-ming. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 coal mine in Wan-bei[J]. Journal of Fuel and Chemistry, 2009, 37(3): 262-265.)

    10. [10]

      [10] PATTERSON J H, HURST H J, QUINTANAR A, BOYD R K, TRAN H. The slag flow characteristics of Australian bituminous coals in entrained-flow slagging gasifiers. 18th Annual International Pittsburgh Coal Conference. Pittsburgh, USA, 2001: 23.

    11. [11]

      [11] KONG L, BAI J, LI W, BAI Z. Effect of lime addition on slag fluidity of coal ash[J]. Journal of Fuel and Chemistry, 2011, 39(6): 407-411.

    12. [12]

      [12] KONG L, BAI J, BAI Z, GUO Z, LI W. Effects of CaCO3 on slag flow properties at high temperatures[J]. Fuel, 2013, 109: 76-85.

    13. [13]

      [13] HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifierslags[J]. Fuel, 1999, 78(4): 439-444.

    14. [14]

      [14] SONG W, SUN Y, WU Y, ZHU Z, KOYAMA S. Measurement and simulation of flow properties of coal ash slag in coal gasification[J]. AIChE J, 2011, 57(3): 801-818.

    15. [15]

      [15] 曹战民, 宋晓艳, 乔芝郁. 热力学模拟计算软件Factsage及其应用[J]. 稀有金属, 2008, 32(2): 216-219. (CAO Zhan-min, SONG Xiao-yan, QIAO Zhi-yu. Thermodynamic modeling software factsage and its application[J]. Chinese Journal of Rare Metal, 2008, 32(2): 216-219.)

    16. [16]

      [16] NOWOK J W. Viscosity and structural state of iron in coal ash slags under gasification conditions[J]. Energy Fuels, 1995, 9(3): 534-539.

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    11. [11]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

Metrics
  • PDF Downloads(0)
  • Abstract views(418)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return