Citation: YAN Heng, ZHANG Jun-ying, WANG Zhing-liang, ZHAO Yong-chun, TIAN Chong, ZHENG Chu-guang. CO2 sequestration by direct mineral carbonation of serpentine under medium and low pressure[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 748-753. shu

CO2 sequestration by direct mineral carbonation of serpentine under medium and low pressure

  • Corresponding author: ZHANG Jun-ying, 
  • Received Date: 21 November 2012
    Available Online: 28 January 2013

    Fund Project: 国家自然科学基金(40972102,41172140) (40972102,41172140)国家重点基础研究发展规划(973计划,2011CB201500)。 (973计划,2011CB201500)

  • Serpentine was used as the mineral material for CO2 sequestration by direct mineral carbonation under medium and low pressure. A series number of experiments were carried out to investigate the factors that influence the conversion of carbonation reaction, such as temperature, pressure, particle size, solution composition and pretreatment. The results show that serpentine can be used to sequestrate CO2 in simulated flue gas by aqueous direct mineral carbonation under medium and low pressure. Carbonation conversion increases with increasing temperature and pressure. Decrease in mineral particle sizes and use of heat treatment before carbonation can effectively improve the conversion. The addition of NaHCO3, which has a buffering effect that kept the solution pH in a certain range, can also improve the carbonation conversion. The highest carbonation conversion of 47.7% and 36.3% was obtained in 60 min under 4 MPa and 150℃ for pure CO2 gas and simulated flue gas, respectively.
  • 加载中
    1. [1]

      [1] YANG H Q, XU Z H, FAN M H, GUPTA R, SLIMANE R B, BLAND A, WRINGHT I. Progress in carbon dioxide separation and capture: A review[J]. J Environ Sci, 2008, 20(1): 14-27.

    2. [2]

      [2] 郑楚光. 温室效应及其控制对策[M]. 北京: 中国电力出版社, 2001: 202. (ZHENG Chu-guang.Greenhouse effect and control measures[M].Beijing: China Electric Power Press, 2001: 202.)

    3. [3]

      [3] SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(7): 486.

    4. [4]

      [4] DUNSMORE H. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral[J].Energy Convers Manage, 1992, 33(5-8): 565-572.

    5. [5]

      [5] LACKNER K S, WENDT C H, BUTT D P, JOYCE E L, SHARP D H.Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170.

    6. [6]

      [6] KOJIMA T, NAGAMINE N, UENO N, UEMIYA S. Absorption and fixation of carbon dioxide by rock weathering[J]. Energy Convers Manage, 1997, 38(S): S461-S466.

    7. [7]

      [7] DANIEL J F, JOHN P B, SOONG Y, JAMES P K, BRETT H H,WILLIAM J G, MAROTO-VALER M M, JOHN M A. Carbon storage and sequestration as mineral carbonates[M]. New York: Kluwer Academic/Plenum Publishers, 2002: 101-118.

    8. [8]

      [8] GOFF F, LACKNER K S.Carbon dioxide sequestering using ultramafic rocks[J]. Environ Geosciences, 1998, 5(3): 89-101.

    9. [9]

      [9] O'CONNOR W K, DAHLIN D C, NILSEN D N, RUSH G E, WALTERS R P, TURNER P C. CO2 storage in solid form: A study of direct mineral carbonation. 5th International Conference on Greenhouse Gas Technologies, Cairns, Australia, 2000.

    10. [10]

      [10] MAROTO-VALER M M, FAUTH D J, KUCHTA M E, ZHANG Y, ANDRESEN J M. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration[J]. Fuel Process Technol, 2005, 86(14-15): 1627-1645.

    11. [11]

      [11] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environ Sci Technol, 2005, 39(24): 9676-9682.

    12. [12]

      [12] MONTES-HERNANDEZ G, PEREZ-LOPEZ R, RENARD F, NIETO J M, CHARLET L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash[J]. J Hazard Mater, 2009, 161(2-3): 1347-1354.

    13. [13]

      [13] HUNTZINGER D N, GIERKE J S, SUTTER L L, KAWATRA S K, EISELE T C. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles[J]. J Hazard Mater, 2009, 168(1): 31-37.

    14. [14]

      [14] ZHANG J Y, YAN H, ZHAO Y C, ZHENG C G.Experimental study on carbon dioxide sequestration by mineral carbonation[C]. 2010 International Pittsburgh Coal Conference, Istanbul, Turkey, 2010.

    15. [15]

      [15] 徐俊, 张军营, 潘霞, 郑楚光. CO2矿物碳酸化隔离实验初探[J].化工学报, 2006, 57(10): 1761-1764. (XU Jun, ZHANG Jun-ying, PAN Xia, ZHENG Chu-guang. Carbon dioxide sequestration as mineral carbonates[J]. Journal of Chemical Industry and Engineering, 2006, 57(10): 1761-1764.)

    16. [16]

      [16] 张军营, 赵永椿, 潘霞, 徐俊, 晏恒, 王志亮, 郑楚光. 硅灰石碳酸化隔离二氧化碳的实验研究[J]. 自然科学进展, 2008, 18(7): 836-840. (ZHANG Jun-ying, ZHAO Yong-chun, Pan Xia, XU Jun, YAN Heng, ZHENG Chu-guang. Experimental study of carbon dioxide sequestration as mineral carbonation using wollastonite[J]. Progress in Natural Science, 2008, 18(7): 836-840.)

    17. [17]

      [17] 晏恒, 张军营, 王志亮, 赵永椿, 郑楚光. 模拟烟气中CO2矿物碳酸化实验研究[J].中国电机工程学报, 2010, 30(11): 44-49. (YAN Heng, ZHANG Jun-ying, WANG Zhi-liang,ZHAO Yong-chun, ZHENG Chu-guang.Carbon dioxide sequestration by mineral carbonation in simulated flue gas using wollastonite[J]. Proceedings of the CSEE, 2010, 30(11): 44-49.)

    18. [18]

      [18] 张建树, 张荣, 毕继诚.CO2矿化反应基础研究Ⅰ. 镁橄榄石和蛇纹石盐酸浸出动力学研究[J].燃料化学学报, 2011, 39(9): 706-711. (ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng.Fundamental research on CO2 mineralization:Ⅰ Leaching kinetics of forsterite and serpentine with hydrochloric acid[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 706-711.)

    19. [19]

      [19] 高雄, 孟烨, 朱辰, 赵良. 氯化铵浸取纤蛇纹石动力学研究[J]. 中国岩溶, 2011, 30(4): 472-478. (GAO Xiong, MENG Ye, ZHU Chen, ZHAO Liang. Study on the kinetics of extracting chrysotile with ammonium chloride[J].Carsologica Sinica, 2011, 30(4): 472-478.)

    20. [20]

      [20] 高雄, 朱辰, 赵良. 灼烧处理对纤蛇纹石反应活性的影响[J]. 高校地质学报, 2012, 18(2): 273-279. (GAO Xiong, ZHU Chen, ZHAO Liang.Impact of heat-pretreatment on the reactivity between ammonium chloride and chrysotile[J]. Geological Journal of China Universities, 2012, 18(2): 273-279.)

    21. [21]

      [21] GUTHRIE G D, CAREY J W, BERGFELD D, BYLER D, CHIPERA S, ZIOCK H J. Geochemical aspects of the carbonation of magnesium silicates in an aqueous medium.Proceedings of the First NETL Conference on Carbon Sequestration, Washington DC, 2001.

    22. [22]

      [22] WU J C S, SHEEN J D, CHEN S Y, FAN Y C. Feasibility of CO2 fixation via artificial rock weathering[J].Ind Eng Chem Res, 2001, 40(18): 3902-3905.

    23. [23]

      [23] BEARAT H, MCKELVY M J, CHIZMESHYA A V G, GORM EY D, NUNEZ R, CARPENTER R W, SQUIRES K, WOLF G H. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation[J]. Environ Sci Technol, 2006, 40(15): 4802-4808.

    24. [24]

      [24] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chem Eng Sci, 2006, 61(13): 4242-4251.

    25. [25]

      [25] SCHULZE R K, HILL M A, FIELD R D, PAPIN P A, HANRAHAN R J, BYLER D D. Characterization of carbonated serpentine using XPS and TEM[J]. Energy Convers Manage, 2004, 45(20): 3169-3179.

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

Metrics
  • PDF Downloads(0)
  • Abstract views(404)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return