Citation: WANG Bao-wei, SUN Qi-mei, LI Yan-ping, LIU Si-han. Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 741-747. shu

Photocatalytic activity of nano-CuO/TiO2 composites prepared by a simple impregnated method

  • Corresponding author: WANG Bao-wei, 
  • Received Date: 6 December 2012
    Available Online: 6 January 2013

  • CuO/TiO2 composites were prepared by a simple impregnated method with Cu(NO3)2·3H2O and P25 as precursors. The characteristic of photocatalysts were analyzed by N2-physisorption, XRD, TEM, UV-vis DRS spectra. In this paper, the effects of Cu content, the scattered catalyst amount, calcination temperature of the photocatalyst and methanol concentration for the photocatalytic activity of CuO/TiO2 composites were studied. We also investigated the stability of the catalyst and proposed a mechanism of the photocatalytic process. The results suggested that the appropriate content of Cu component in CuO/TiO2 is 2.0%~7.5% and hydrogen production rate can reach 1 022 μmol/(h·g) at 2.0% of Cu content, 10% of methanol concentration, 350℃ of calcination temperature and 1.0 g/L of scattered catalyst amount. It was also demonstrated that CuO/TiO2 photocatalyst had a stable activity for H2 evolution.
  • 加载中
    1. [1]

      [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.

    2. [2]

      [2] 王保伟, 孙启梅. 可见光催化水解制氢催化剂研究进展[J]. 化学通报, 2012, 75(12): 1059-1068. (WANG Bao-wei, SUN Qi-mei. An overview of photocatalyst for water splitting producing hydrogen under visible-light irradiation[J]. Chemistry Bulletin, 2012, 75(12): 1059-1068.)

    3. [3]

      [3] WU Y Q, LU G X. The role of Cu(I) species for photocatalytic hydrogen generation over CuOx/TiO2[J]. Catal Lett, 2009, 133(1): 97-105.

    4. [4]

      [4] 彭绍琴, 刘雄鹰, 李越湘. 伊红-Y敏化硫掺杂TiO2的制备及可见光光解水制氢性能[J]. 南昌大学学报, 2008, 32(5): 462-465. (PENG Shao-qin, LIU Xiong-ying, LI Yue-xiang. Preparation of sulfur-doped TiO2 sensitizedby EosinY and performance of photocatalytic hydrogen evolution under visible light irradiation[J]. Journal of Nanchang University, 2008, 32(5): 462-465.)

    5. [5]

      [5] ICHIHASHI Y C, YAMAGUCHI M. Photodecomposition of water with methane over titanium oxide photocatalysts modified with metal[J]. Res Chem Intermed, 2010, 36(5): 463-472.

    6. [6]

      [6] XU S P, NG J W. Fabrication and comparison of highly efcient Cu incorporated TiO2 photocatalyst for hydrogen generation from water[J]. Int J Hydrogen Energy, 2010, 35(11): 5254-5261.

    7. [7]

      [7] CHOI W Y, TEMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics[J]. J Phys Chem, 1994, 98(51): 13669-13679.

    8. [8]

      [8] LALITH K, REDDY J K. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: Water mixtures under solar irradiation: A structure-activity correlation[J]. Int J Hydrogen Energy, 2010, 35(9): 3991-4001.

    9. [9]

      [9] 陈孝云, 陆东芳, 黄锦锋, 卢燕凤, 郑建强. 离子液体-水混合介质中合成N、F共掺杂宽光域响应多孔TiO2光催化剂及性能[J]. 物理化学学报, 2012, 28(1): 161-169. (CHEN Xiao-yun, LU Dong-fang, HUANG Jin-feng, LU Yan-feng, ZHENG Jian-qiang. Preparation and properties of N-F co-doped TiO2 photocatalyst with wide range light response and multipore structure from ionic liquid-water mixture solvent[J]. Acta Physico-Chimica Sinica, 2012, 28(1): 161-169.)

    10. [10]

      [10] SONG K X, ZHOU J H, BAO J C, FENG Y Y. Photocatalytic activity of (copper, nitrogen)-codoped titaniumdioxide nanoparticles[J]. J Am Ceram Soc, 2008, 91(4): 1369-1373.

    11. [11]

      [11] 董源, 蒋淇, 杨开, 彭祥, 黄铁骑, 马紫峰, 上官文峰. 微波法制备 CdS-TiO2NT复合催化剂及其在可见光下分解水制氢的性能[J]. 高校化学工程学报, 2010, 24(3): 416-421. (DONG Yuan, JIANG Qi, YANG Kai, PENG Xiang, HAUNG Tie-qi, SHANG GUAN Wen-feng. Preparation of CdS-TiO2NT composite catalysts by microwave irradiation method and its phtocatalytic performance of splitting water to H2 under visible light[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 416-421. )

    12. [12]

      [12] ZHANG X Y, SUN Y J. A green and facile synthesis of TiO2/grapheme nanocomposites and their photocatalytic activity for hydrogen evolution[J]. Int J Hydrogen Energy, 2012, 37(1): 811-815.

    13. [13]

      [13] ZHANG X Y, LI H P, CUI X L, LIN Y H. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. J Mater Chem, 2010, 20(14): 2801-2806.

    14. [14]

      [14] XU S P, DU A J H. Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water[J]. Int J Hydrogen Energy, 2011, 36(11): 6560-6568.

    15. [15]

      [15] XU S P, NG J W, DU A J H, LIU J C, SUN D D L. Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water[J]. Int J Hydrogen Energy, 2011, 36(11): 6538-6545.

    16. [16]

      [16] ZHAO P J, WU R, HOU J, CHANG A M, GUAN F, ZHANG B. One-step hydrothermal synthesis and visible-light photocatalytic activity of ultrafine Cu-nanodot-modified TiO2 nanotubes[J]. Acta Physico-Chimica Sinica, 2012, 28(8): 1971-1977.

    17. [17]

      [17] YU J G, HAI Y. Photocatalytic hydrogen production over CuO-modified titania[J]. Colloid Interface Sci, 2011, 357(1): 223-228.

    18. [18]

      [18] MONTINI T, GOMBAC V, SOREDELLI L, DELGADO J, CHEN X W, ADAMI G, FORNASIERO P. Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions[J]. Chem Cat Chem, 2011, 3(3): 574-577.

    19. [19]

      [19] LI Z H, LIU J W, WANG D J, GAO Y, SHEN J. Cu2O/Cu/TiO2 nanotube ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity[J]. Int J Hydrogen Energy, 2012, 37(8): 6431-6437.

    20. [20]

      [20] XU S P, SUN D D L. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO[J]. Int J Hydrogen Energy, 2009, 34(15): 6096-6104.

    21. [21]

      [21] BOWKER M, JAMES D, STONE P, BENNETT R, PERKINS N, MILLARD L, GREAVES J, DICKINSON A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2[J]. J Catal, 2003, 217(2): 427-433.

    22. [22]

      [22] GOMBAC V, SORDELLI L. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J Phys Chem A, 2010, 114(11): 3916-3925.

    23. [23]

      [23] BANDARA J, UDAWATTA C P K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O[J]. Photochem Photobiol Sci, 2005, 4(11): 857-861.

    24. [24]

      [24] SREETHAWONG T, PUANGPETCH T, CHAVADEJ S, YOSHIKAWA S. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template[J]. J Power Sources, 2007, 165(2): 861-869.

    25. [25]

      [25] CHEN J, OLLIS D F, RULKENS W H, BRUNING H. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanism[J]. Water Res, 1999, 33: 669-676.

    26. [26]

      [26] YOONG L S, CHONG F K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light[J]. Energy, 2009, 34(10): 1652-1661.

    27. [27]

      [27] JIN Z L, ZHANG X J, LI Y X, LI S B, LU G X. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation[J]. Catal Commun, 2007, 8(8): 1267-1273.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return