Citation: YANG Peng-ju, WANG Jian, ZHAO Jiang-hong, ZHU Zhen-ping. Improved efficiency of water splitting for hydrogen evolution on Rhodamine B sensitized P25 nanocomposites under visible light[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 735-740. shu

Improved efficiency of water splitting for hydrogen evolution on Rhodamine B sensitized P25 nanocomposites under visible light

  • Corresponding author: ZHAO Jiang-hong,  ZHU Zhen-ping, 
  • Received Date: 24 December 2012
    Available Online: 28 January 2013

    Fund Project: 中国科学院山西煤炭化学研究所青年人才基金(2011SQNRC19)。 (2011SQNRC19)

  • The RhB-P25 nanocomposites synthesized by low temperature calcination were used for visible light induced photocatalytic water splitting. It was confirmed by X-ray diffraction (XRD) and field emission scanning electron microscope(FESEM)characterization that the crystalline phase and morphology of P25 catalyst were not changed by calcination treatment. UV-visible absorption spectra and FT-IR spectra indicated that there was a strong mutual interaction between RhB and P25. PL spectra also proved that electrons could easily transfer from RhB to P25 after the low temperature calcination treatment. The highest rate of hydrogen evolution was observed for the sample calcined at 250℃,about 65.1 μmol/(g·h) under visible light irradiation, which was 1.8 times larger than that of the physical mixture of P25 and RhB.
  • 加载中
    1. [1]

      [1] WALYER M G, WARREN E L, MCKONE J R, BOETTCHER S W, MI Q, SANTORI E A, LEWIS N S. Solar water splitting cells[J]. Chem Rev, 2010, 110(11): 6446-6473.

    2. [2]

      [2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

    3. [3]

      [3] HOFFMANN M R, MARTIN S T, CHOI W, BAHNEMANNT D W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69-96.

    4. [4]

      [4] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278.

    5. [5]

      [5] XIANG Q, YU J, JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chem Soc Rev, 2012, 41(2): 782-796.

    6. [6]

      [6] CHEN X, MAO S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chem Rev, 2007, 107(7): 2891-2959.

    7. [7]

      [7] LIU G, WANG L, YANG H G, CHENG H M, LU(MAX) G Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring[J]. J Mater Chem, 2010, 20(5): 831-843.

    8. [8]

      [8] BINGHAM S, DAUOD W A. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping[J]. J Mater Chem, 2011, 21(7): 2041-2050.

    9. [9]

      [9] NI M, LEUNG M K H, LEUNG D Y C, SUMATHY L K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renew Sust Energ Rev, 2007, 11(3): 401-425.

    10. [10]

      [10] JIN Z, ZHANG X, LI Y, LI S, LU G. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation[J]. Catal Commun, 2007, 8(8): 1267-1273.

    11. [11]

      [11] PENG T, KE D, CAI P, DAI K, MA L, ZAN L. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures[J]. J Power Sources, 2008, 108(1): 498-505.

    12. [12]

      [12] KAJIWARA T, HASHIMOTO K, KAWAI T, SAKATA T. Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces[J]. J Phys Chem, 1982, 86(23): 4516-4522.

    13. [13]

      [13] LE T T, AKHTAR M S, PARK D M, LEE J C, YANG O B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light[J]. Appl Catal B: Environ, 2012, 111-112(8): 397-401.

    14. [14]

      [14] ZHANG Q, JOO J B, LU Z, DAHL M, OLIVEIRA D Q L, YE M, YIN Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters[J]. Nano Res, 2011, 4(1): 103-114.

    15. [15]

      [15] ZHAO L, CHEN X, WANG X, ZHANG Y, WEI W, SUN Y, ANTONIETTI M, TITIRICI M M. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis[J]. Adv Mater, 2010, 22(30): 3317-3321.

    16. [16]

      [16] JING L, QU Y, WANG B, LI S, JIANG B J, YANG L, FU W, FU H, SUN J. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity[J]. Sol Energy Mater Sol Cells, 2006, 90(12): 1773-1787.

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    13. [13]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(0)
  • Abstract views(906)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return