Citation: LIU Li-hua, LIU Shu-qun, CHAI Yong-ming, LIU Yun-qi, LIU Chen-guang. Synergetic effect between Ni2P/γ-Al2O3 and MoS2/γ-Al2O3 catalysts on their performance in hydrodenitrogenation of quinoline[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 698-702. shu

Synergetic effect between Ni2P/γ-Al2O3 and MoS2/γ-Al2O3 catalysts on their performance in hydrodenitrogenation of quinoline

  • Corresponding author: LIU Li-hua, 
  • Received Date: 1 March 2013
    Available Online: 29 April 2013

    Fund Project: Major State Basic Research Development Program of China (973 Program,2010CB226905) (973 Program,2010CB226905) the Natural Science Foundation of Educational Committee of Anhui Province (KJ2013B243) (KJ2013B243) the Youth Foundation of Huaibei Normal University (2012xq47, 2013xqz01). (2012xq47, 2013xqz01)

  • The synergetic effect between Ni2P/Al2O3 and MoS2/Al2O3 catalysts on their performance in the hydrodenitrogenation of quinoline was proved by a simplified experimental design and explained by the remote control model through a migration of hydrogen spillover. The results indicated that the synergism factor of Ni2P and MoS2 is slightly higher than that of NiSx and MoS2; it decreases with the increase of reaction temperature. Since the spillover hydrogen with Ni2P can increase the amount of hydrogenation active sites of MoS2, the hydrogenation rate of 1,2,3,4-tetrahydroquinoline and 5,6,7,8-tetrahydroquinoline to decahydroquinoline over the Ni2P/Al2O3 and MoS2/Al2O3 catalyst system is then greatly enhanced; as a result, Ni2P is a superior promoter for MoS2 catalyst for hydrodenitrogenation.
  • 加载中
    1. [1]

      [1] TOPSΦE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420.

    2. [2]

      [2] KARROUA M, MATRALIS H, GRANGE P, DELMON B. Synergy between "NiMoS" and Co9S8 in the hydrogenation of cyclohexene and hydrodesulfurization of thiophene[J]. J Catal, 1993, 139(2): 371-374.

    3. [3]

      [3] DELMON B. Are solid catalysts successfully emulating enzymes[J]. Chin J Catal, 2010, 26(8): 859-871.

    4. [4]

      [4] TOPSΦE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J]. Appl Catal, 1986, 25(1-2): 273-293.

    5. [5]

      [5] TOPSΦE H, HINNEMANN B, NΦRSKOV J K, LAURITSEN J V, BESENBACHER F, HANSEN P L, HYTOFT G, EGEBERG R G, KNUDSEN K G. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts[J]. Catal Today, 2005, 107-108: 12-22.

    6. [6]

      [6] LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN B, HELVEG S, NΦRSKOV J K, CLAUSEN B S, TOPSΦE H, LAGSGAARD E, BESENBACHER F. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007, 249(2): 220-233.

    7. [7]

      [7] VILLARROEL M, BAEZA P, GRACIA F, ESCALONA N, AVILA P, GIL-LLAMBÍAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A: Gen, 2009, 364(1-2): 75-79.

    8. [8]

      [8] VILLARROEL M, BAEZA P, ESCALONA N, OJEDA J, DELMON B, GIL-LLAMBÍAS F J. MD//Mo and MD//W[MD = Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization[J]. Appl Catal A: Gen, 2008, 345(2): 152-157.

    9. [9]

      [9] BAEZA P, VILLARROEL M, ÁVILA P, LÓPEZ AGUDO A, DELMON B, GIL-LLAMBÍAS F J. Spillover hydrogen mobility during Co-Mo catalyzed HDS in industrial-like conditions[J]. Appl Catal A: Gen, 2006, 304: 109-115.

    10. [10]

      [10] BAEZA P, URETA-ZAÑARTU M S, ESCALONA N, OJEDA J, GIL-LLAMBÍAS F J, DELMON B. Migration of surface species on supports: A proof of their role on the synergism between CoSx or NiSx and MoS2 in HDS[J]. Appl Catal A: Gen, 2004, 274(1-2): 303-309.

    11. [11]

      [11] OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBÍAS F J. Synergy between Mo/SiO2 and Co/SiO2 beds in HDS: A remote control effect[J]. Chem Commun, 2003, (13): 1608-1609.

    12. [12]

      [12] VALDEVENITO F, GARCÍA R, ESCALONA N, GIL-LLAMBIAS F J, RASMUSSEN S B, LÓPEZ-AGUDO A. Ni//Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation[J]. Catal Commun, 2010, 11(14): 1154-1156.

    13. [13]

      [13] LIU L, LIU B, CHAI Y, LIU Y, LIU C. Synergetic effect between sulfurized Mo/γ-Al2O3 and Ni/γ-Al2O3 catalysts in hydrodenitrogenation of quinoline[J]. J Nat Gas Chem, 2011, 20(2): 214-217.

    14. [14]

      [14] LIU L, LI G, LIU B, LIU D, LIU Y, LIU C. Hydrodesulfurization performence study of Ni2P-modiffied MoS2/Al2O3 catalysts[J]. Chem Ind Eng Soc Chin, 2011, 62(5): 1296-1231.

    15. [15]

      [15] GUAN Q, LI W. The synthesis and evaluation of highly active Ni2P-MoS2 catalysts using the decomposition of hypophosphites[J]. Catal Sci Technol, 2012, 2(11): 2356-2360.

    16. [16]

      [16] LAN L, GE S, LIU K, HOU Y, BAO X. Synthesis of Ni2P promoted trimetallic NiMoW/γ-Al2O3 catalysts for diesel oil hydrotreatment[J]. J Nat Gas Chem, 2011, 20(2): 117-122.

    17. [17]

      [17] MCDONALD J W, FRIESEN G D, ROSENHEIN L D, NEWTON W E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates[J]. Inorg Chim Acta, 1983, 72(1): 205-210.

    18. [18]

      [18] LU M, WANG A, LI X, DUAN X, TENG Y, WANG Y, SONG C, HU Y. Hydrodenitrogenation of quinoline catalyzed by MCM-41-supported nickel phosphides[J]. Energy Fuels, 2007, 21(2): 554-560.

    19. [19]

      [19] INFANTES-MOLINA A, CECILIA J A, PAWELEC B, FIERRO J L G, RODRÍGUEZ-CASTELLÓN, EJIMÉNEZ-LÓPEZ A. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions[J]. Appl Catal A: Gen, 2010, 390(1/2): 253-263.

    20. [20]

      [20] KORÁNYI T I, COUMANS A E, HENSEN E J M, RYOO R, KIM H S, PFEIFER É, KASZTOVSZKY Z. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts[J]. Appl Catal A: Gen, 2009, 365(1): 48-54.

    21. [21]

      [21] KORÁNYI T I, VÍT Z, PODUVAL D G, RYOO R, KIM H S, HENSEN E J M. SBA-15-supported nickel phosphide hydrotreating catalysts[J]. J Catal, 2008, 253(1): 119-131.

    22. [22]

      [22] WANG X, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. J Catal, 2002, 208(2): 321-331.

    23. [23]

      [23] ARAI M, FUKUSHIMA M, NISHIYAMA Y. Interrupted-temperature programmed desorption of hydrogen over silica-supported platinum catalysts: The distribution of activation energy of desorption and the phenomena of spillover and reverse spillover of hydrogen[J]. Appl Surf Sci, 1996, 99(2): 145-150.

    24. [24]

      [24] CHEN J, SUN L, WANG R, ZHANG J. Hydrodechlorination of chlorobenzene over Ni2P/SiO2 catalysts: Influence of Ni2P loading[J]. Catal Lett, 2009, 133(3-4): 346-353.

    25. [25]

      [25] DEEPA G, SANKARANARAYANAN T M, SHANTHI K, VISWANATHAN B. Hydrodenitrogenation of model N-compounds over NiO-MoO3 supported on mesoporous materials[J]. Catal Today, 2012, 198(1): 252-262.

    26. [26]

      [26] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J]. J Catal, 1998, 179(1): 18-27.

    27. [27]

      [27] EIJSBOUTS S, VAN GESTEL J N M, VAN VEEN J A R, DE BEER V H J, PRINS R. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni Mo catalysts[J]. J Catal, 1991, 131(2): 412-432.

    28. [28]

      [28] ESCALONA N, GARCÍA R, LAGOS G, NAVARRETE C, BAEZA P, GIL-LLAMBÍAS F J. Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoSx/γ-Al2O3, NiSx/γ-Al2O3 and MoS2/γ-Al2O3 catalysts[J]. Catal Commun, 2006, 7(12): 1053-1056.

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    4. [4]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    10. [10]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    11. [11]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    14. [14]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    15. [15]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    18. [18]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

Metrics
  • PDF Downloads(0)
  • Abstract views(490)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return