Citation:
LIU Li-hua, LIU Shu-qun, CHAI Yong-ming, LIU Yun-qi, LIU Chen-guang. Synergetic effect between Ni2P/γ-Al2O3 and MoS2/γ-Al2O3 catalysts on their performance in hydrodenitrogenation of quinoline[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(6): 698-702.
-
The synergetic effect between Ni2P/Al2O3 and MoS2/Al2O3 catalysts on their performance in the hydrodenitrogenation of quinoline was proved by a simplified experimental design and explained by the remote control model through a migration of hydrogen spillover. The results indicated that the synergism factor of Ni2P and MoS2 is slightly higher than that of NiSx and MoS2; it decreases with the increase of reaction temperature. Since the spillover hydrogen with Ni2P can increase the amount of hydrogenation active sites of MoS2, the hydrogenation rate of 1,2,3,4-tetrahydroquinoline and 5,6,7,8-tetrahydroquinoline to decahydroquinoline over the Ni2P/Al2O3 and MoS2/Al2O3 catalyst system is then greatly enhanced; as a result, Ni2P is a superior promoter for MoS2 catalyst for hydrodenitrogenation.
-
Keywords:
- hydrogen spillover,
- synergetic effect,
- hydrodenitrogenation,
- MoS2,
- Ni2P,
- quinoline
-
-
-
[1]
[1] TOPSΦE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420.
-
[2]
[2] KARROUA M, MATRALIS H, GRANGE P, DELMON B. Synergy between "NiMoS" and Co9S8 in the hydrogenation of cyclohexene and hydrodesulfurization of thiophene[J]. J Catal, 1993, 139(2): 371-374.
-
[3]
[3] DELMON B. Are solid catalysts successfully emulating enzymes[J]. Chin J Catal, 2010, 26(8): 859-871.
-
[4]
[4] TOPSΦE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J]. Appl Catal, 1986, 25(1-2): 273-293.
-
[5]
[5] TOPSΦE H, HINNEMANN B, NΦRSKOV J K, LAURITSEN J V, BESENBACHER F, HANSEN P L, HYTOFT G, EGEBERG R G, KNUDSEN K G. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts[J]. Catal Today, 2005, 107-108: 12-22.
-
[6]
[6] LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN B, HELVEG S, NΦRSKOV J K, CLAUSEN B S, TOPSΦE H, LAGSGAARD E, BESENBACHER F. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007, 249(2): 220-233.
-
[7]
[7] VILLARROEL M, BAEZA P, GRACIA F, ESCALONA N, AVILA P, GIL-LLAMBÍAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A: Gen, 2009, 364(1-2): 75-79.
-
[8]
[8] VILLARROEL M, BAEZA P, ESCALONA N, OJEDA J, DELMON B, GIL-LLAMBÍAS F J. MD//Mo and MD//W[MD = Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization[J]. Appl Catal A: Gen, 2008, 345(2): 152-157.
-
[9]
[9] BAEZA P, VILLARROEL M, ÁVILA P, LÓPEZ AGUDO A, DELMON B, GIL-LLAMBÍAS F J. Spillover hydrogen mobility during Co-Mo catalyzed HDS in industrial-like conditions[J]. Appl Catal A: Gen, 2006, 304: 109-115.
-
[10]
[10] BAEZA P, URETA-ZAÑARTU M S, ESCALONA N, OJEDA J, GIL-LLAMBÍAS F J, DELMON B. Migration of surface species on supports: A proof of their role on the synergism between CoSx or NiSx and MoS2 in HDS[J]. Appl Catal A: Gen, 2004, 274(1-2): 303-309.
-
[11]
[11] OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBÍAS F J. Synergy between Mo/SiO2 and Co/SiO2 beds in HDS: A remote control effect[J]. Chem Commun, 2003, (13): 1608-1609.
-
[12]
[12] VALDEVENITO F, GARCÍA R, ESCALONA N, GIL-LLAMBIAS F J, RASMUSSEN S B, LÓPEZ-AGUDO A. Ni//Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation[J]. Catal Commun, 2010, 11(14): 1154-1156.
-
[13]
[13] LIU L, LIU B, CHAI Y, LIU Y, LIU C. Synergetic effect between sulfurized Mo/γ-Al2O3 and Ni/γ-Al2O3 catalysts in hydrodenitrogenation of quinoline[J]. J Nat Gas Chem, 2011, 20(2): 214-217.
-
[14]
[14] LIU L, LI G, LIU B, LIU D, LIU Y, LIU C. Hydrodesulfurization performence study of Ni2P-modiffied MoS2/Al2O3 catalysts[J]. Chem Ind Eng Soc Chin, 2011, 62(5): 1296-1231.
-
[15]
[15] GUAN Q, LI W. The synthesis and evaluation of highly active Ni2P-MoS2 catalysts using the decomposition of hypophosphites[J]. Catal Sci Technol, 2012, 2(11): 2356-2360.
-
[16]
[16] LAN L, GE S, LIU K, HOU Y, BAO X. Synthesis of Ni2P promoted trimetallic NiMoW/γ-Al2O3 catalysts for diesel oil hydrotreatment[J]. J Nat Gas Chem, 2011, 20(2): 117-122.
-
[17]
[17] MCDONALD J W, FRIESEN G D, ROSENHEIN L D, NEWTON W E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates[J]. Inorg Chim Acta, 1983, 72(1): 205-210.
-
[18]
[18] LU M, WANG A, LI X, DUAN X, TENG Y, WANG Y, SONG C, HU Y. Hydrodenitrogenation of quinoline catalyzed by MCM-41-supported nickel phosphides[J]. Energy Fuels, 2007, 21(2): 554-560.
-
[19]
[19] INFANTES-MOLINA A, CECILIA J A, PAWELEC B, FIERRO J L G, RODRÍGUEZ-CASTELLÓN, EJIMÉNEZ-LÓPEZ A. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS-HDN competitive reactions[J]. Appl Catal A: Gen, 2010, 390(1/2): 253-263.
-
[20]
[20] KORÁNYI T I, COUMANS A E, HENSEN E J M, RYOO R, KIM H S, PFEIFER É, KASZTOVSZKY Z. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts[J]. Appl Catal A: Gen, 2009, 365(1): 48-54.
-
[21]
[21] KORÁNYI T I, VÍT Z, PODUVAL D G, RYOO R, KIM H S, HENSEN E J M. SBA-15-supported nickel phosphide hydrotreating catalysts[J]. J Catal, 2008, 253(1): 119-131.
-
[22]
[22] WANG X, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. J Catal, 2002, 208(2): 321-331.
-
[23]
[23] ARAI M, FUKUSHIMA M, NISHIYAMA Y. Interrupted-temperature programmed desorption of hydrogen over silica-supported platinum catalysts: The distribution of activation energy of desorption and the phenomena of spillover and reverse spillover of hydrogen[J]. Appl Surf Sci, 1996, 99(2): 145-150.
-
[24]
[24] CHEN J, SUN L, WANG R, ZHANG J. Hydrodechlorination of chlorobenzene over Ni2P/SiO2 catalysts: Influence of Ni2P loading[J]. Catal Lett, 2009, 133(3-4): 346-353.
-
[25]
[25] DEEPA G, SANKARANARAYANAN T M, SHANTHI K, VISWANATHAN B. Hydrodenitrogenation of model N-compounds over NiO-MoO3 supported on mesoporous materials[J]. Catal Today, 2012, 198(1): 252-262.
-
[26]
[26] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J]. J Catal, 1998, 179(1): 18-27.
-
[27]
[27] EIJSBOUTS S, VAN GESTEL J N M, VAN VEEN J A R, DE BEER V H J, PRINS R. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni Mo catalysts[J]. J Catal, 1991, 131(2): 412-432.
-
[28]
[28] ESCALONA N, GARCÍA R, LAGOS G, NAVARRETE C, BAEZA P, GIL-LLAMBÍAS F J. Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoSx/γ-Al2O3, NiSx/γ-Al2O3 and MoS2/γ-Al2O3 catalysts[J]. Catal Commun, 2006, 7(12): 1053-1056.
-
[1]
-
-
-
[1]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[2]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[3]
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
-
[4]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[5]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[6]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[8]
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
-
[9]
Xian-Rui Meng , Qian Chen , Mei-Feng Wu , Qiang Wu , Su-Qin Wang , Li-Ping Jin , Fan Zhou , Ren-Li Ma , Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543
-
[10]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[11]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[12]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[13]
Yayun Shi , Congcong Liu , Zhijun Zuo , Xiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772
-
[14]
Zheng Zhang , Lei Shi , Bin Wang , Jingyuan Qu , Xiaoling Wang , Tao Wang , Qitao Jiang , Wuhong Xue , Xiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687
-
[15]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
-
[16]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[17]
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
-
[18]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093
-
[19]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[20]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(490)
- HTML views(53)