Citation: YAN Peng-hui, TAO Zhi-chao, HAO Kun, WANG Yu-dan, YANG Yong, LI Yong-wang. Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking Fischer-Tropsch wax[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(6): 691-697. shu

Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking Fischer-Tropsch wax

  • Corresponding author: YANG Yong, 
  • Received Date: 14 January 2013
    Available Online: 6 March 2013

    Fund Project: 国家高技术研究发展计划(863计划,2011AA05A205) (863计划,2011AA05A205)

  • Three hydrocracking catalysts were prepared by impregnation method with different incorporation manners of Ni/W metals on HY/Al2O3 support. The effect of combination methods on acidity, hydrogenation capability of the catalysts and its hydrocracking performance on FT wax was studied. The balance between hydrogenation performance and cracking performance could be modulated by adjusting the metal-support combination methods. Ni/W pre-impregnated on HY can increase the hydrogenation capability of the catalyst and simultaneously lower the acidity of the support. The results show that the coordination of high hydrogenation capability and low acidity of catalyst can inhibit the formation of secondary cracking on some extent, and increase the selectivity of diesel. While Ni/W metals supported on HY/Al2O3 can achieve a relative balance of hydrogenation and cracking, thus the catalysts have a higher activity and the more flexible ability to modulate reaction.
  • 加载中
    1. [1]

      [1] ZHOU Z, ZHANG Y, TIERNEY J W, WENDER I. Hybrid zirconia catalysts for conversion of Fischer-Tropsch waxy products to transportation[J]. Fuel Process Technol, 2003, 83(1/3): 67-80.

    2. [2]

      [2] CHO K M, PARK S, SEO J G, YOUN M H, BAECK S H, JUN K W, CHUNG J S, SONG I K. Production of middle distillate in a dual-bed reactor from synthesis gas through wax cracking: Effect of acid property of Pd-loaded solid acid catalysts on the wax conversion and middle distillate selectivity[J]. Appl Catal B: Environ, 2008, 83: 195-201.

    3. [3]

      [3] 方向晨, 关明华, 廖士纲. 加氢裂化[M]. 北京: 中国石化出版社, 2008: 110-118. (FANG Xiang-chen, GUAN Ming-hua, LIAO Shi-gang. Hydrocracking[M]. Beijing: China Petrochemical Press, 2008: 110-118.)

    4. [4]

      [4] LECKEL D. Hydroprocessing euro 4-type diesel from high-temperature fischer-tropsch vacuum gas oils[J]. Energy Fuels, 2009, 23(1): 38-45.

    5. [5]

      [5] LEE J, HWANG S, SEO J G, HONG U G, JUNG J C, SONG I Y. Pd catalyst supported on SiO2-Al2O3 xerogel for hydrocracking of paraffin wax to middle distillate[J]. J Ind Eng Chem, 2011, 179(2): 310-315.

    6. [6]

      [6] GAMBA S, PELLEGRINI L A, CALEMMA V, GAMBARO C. Liquid fuels from Fischer-Tropsch wax hydrocracking: Isomer distribution[J]. Catal Today, 2010, 159(1/2): 58-64.

    7. [7]

      [7] TIAN R, SHEN B J, WANG F C, LU C X, XU C M. Ni/W-USY catalyst for high diesel yield and deep hydrodearomatization[J]. Energy Fuels, 2009, 23(1): 55-59.

    8. [8]

      [8] TORREA R D L I, DOMINGUEZ J M, MELO-BANDA J A, RAMOS G C E, SANDOVAL G. Synthesis of hybrid(Ni-Mo) carbides/carbon-coated mesoporous materials and their catalytic properties for hydrocracking of intermediate paraffins (n-C8)[J]. Catal Today, 2009, 148(1/2): 55-62.

    9. [9]

      [9] LEE J, HWANG S, SEO J G, LEE S B, JUNG J C, SONG I K. Production of middle distillate through hydrocracking of paraffin wax over Pd/SiO2-Al2O3 catalysts[J]. J Ind Eng Chem, 2010, 169(3/4): 790-794.

    10. [10]

      [10] CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Appl Catal, 2000, 190(1/2): 207-218.

    11. [11]

      [11] 李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004: 170-200. (LI Da-dong. Hydrotreating technology and engineering[M]. Beijing: China Petrochemical Press, 2004: 170-200.)

    12. [12]

      [12] 万学兵, 丁连杰. 共胶法系列加氢裂化催化剂生产工艺的开发及工业应用[J]. 工业催化, 2002, 10(1): 10-16. (WAN Xue-bing, DING Lian-jie. Development and industrial application of a hydrocracking catalysts preparation technology via co-gelling method[J]. Industrial Catalysis, 2002, 10(1): 10-16)

    13. [13]

      [13] 杨军, 卢冠忠. 润滑油异构脱蜡催化剂研究[J]. 工业催化, 2002, 10(3): 1-7. (YANG Jun, LU Guan-zhong. Studies on lube oil isodewaxing catalyst[J]. Industrial Catalysis, 2002, 10(3): 1-7.)

    14. [14]

      [14] CUI G Q, WANG G F, FAN H F, SUN X Y, JIANG Y, WANG S J, LIU D, GUI J Z. Towards understanding the microstructures and hydrocracking performance of sulfide Ni-W catalysts: Effect of metal loading[J]. Fuel Process Technol, 2011, 92(12): 2320-2327.

    15. [15]

      [15] KELLY S D, YANG N, MICKELSON G E, GREENLAY N, KARAPETROVA E, SINKLER W, BARE S R.Structural characterization of Ni-W hydrocracking catalysts using in situ EXAFS and HRTEM[J]. J Catal, 2009, 263(1): 16-33.

    16. [16]

      [16] HAAN D R, JOORST G, MOKOENA E, NICOLAIDES C P. Non-sulfided nickel supported on silicate alumina as catalyst for the hydrocracking of n-hexadecane and of iron-based Fischer-Tropsch wax[J]. Appl Catal, 2007, 327(2): 247-254.

    17. [17]

      [17] PARK Y C, OH E S, RHEE H K. Characterization and catalytic activity of WNiMo/Al2O3 catalysts for hydrodenitrogenation of pyridine[J]. Ind Eng Chem Res, 1997, 36(12): 5083-5089.

    18. [18]

      [18] 郑云弟, 蒋彩兰, 康宏敏, 彭蓉, 王书峰, 钱颖. 加氢脱氮催化剂载体的研究[J]. 工业催化, 2010, 18(16): 1-7. (ZHENG Yun-di, JIANG Cai-lan, KANG Hong-min, PENG Rong, WANG Shu-feng, QIAN Ying. Researches on catalyst supports for hydrodenitrogenation[J]. Industrial Catalysis, 2010, 18(16): 1-7.)

    19. [19]

      [19] ELANGOVAN S P, MARTIN H. Evaluation of Pt/MCM-41//MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane[J]. J Catal, 2003, 217(2): 388-395.

    20. [20]

      [20] MARTENS J A, TIELEN M, JACOBS P A, WEITKAMP J. Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane[J]. Zeolites, 1984, 4(2): 98-107.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    15. [15]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

Metrics
  • PDF Downloads(0)
  • Abstract views(496)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return