Citation:
LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it’s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(6): 641-648.
-
Shendong Shangwan coal (SDR) and its inertinite concentrated(SDI)from petrographical separation were characterized by 13C-CP/MAS NMR, FT-IR and XPS and their structure unit information was obtained. Based on structure parameters and elemental analysis, macromolecular structure models of SDR and SDI were constructed and 13C chemical shift of the two models was calculated by ACD/CNMR predictor. The results indicate that naphthalene with condensation degrees of 2 is the main form of aromatic carbon in SDR, naphthalene and phenanthrene are those in SDI. The aromaticity of SDI is greater than that of SDR. For SDR and SDI, oxygen atoms are present as carbonyl groups and nitrogen atoms exist in the forms of pyridine and pyrrole. The calculated chemical shift spectrogram of model is well consistent with that of the experimental results. The structural formulas calculated for SDR and SDI are C181H136N2O24 and C186H148N2O22, respectively.
-
Keywords:
- coal,
- inertinite concentrated,
- 13C-NMR,
- aromaticity,
- model construction
-
-
-
[1]
[1] GIVEN P H, CRONAUER D C, SPACKMAN W, LOVELL H L, DAVIS A, BISWAS B. Dependence of coal liquefaction behaviour on coal characteristics: 2. Role of petrographic composition[J]. Fuel, 1975, 54(1): 40-49.
-
[2]
[2] LI W H, HUO W D, SHU G P, BAI X F, DAI H W. Hydroliquefaction characteristics of majiata coal and its macerals components[J]. Journal of Fuel Chemistry and Technology, 2001, 29(2): 104-107.
-
[3]
[3] 相建华, 曾凡桂, 梁虎珍, 孙蓓蕾, 张莉, 李美芬, 贾建波. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(7): 481-488. (XIANG Jian-hua, ZENG Fan-gui, LIANG Hu-zhen, SUN Bei-lei, ZHANG Li, LI Mei-fen, JIA Jian-bo. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488.)
-
[4]
[4] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for Upper Freeport coal 13C NMR chemical shift calculation[J]. Energy Fuels, 2002, 16(2): 379-387.
-
[5]
[5] OHKAWA T, SASAI T, KOMODA N, MURATA S, NOMURA M. Computer-aided construction of coal molecular structure using construction knowledge and partial structure evaluation[J]. Energy Fuels, 1997, 11(5): 937-944.
-
[6]
[6] FAULON J L, CARLSON G A, HATCHER P G. Statistical models for bituminous coal: A three-dimensional evaluation of structural and physical properties based on computer-generated structures[J]. Energy Fuels, 1993, 7(6): 1062-1072.
-
[7]
[7] 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13C-NMR analysis on different macerals of several low-to-medium rank coals[J]. Journal of Fuel Chemistry and Technology, 2005, 33(5): 540-543.)
-
[8]
[8] 谷红伟. 神华煤及其显微组分的分子式探讨研究[J]. 煤质技术, 2009, 15(5): 71-73. (GU Hong-wei. Study on the molecular formulas of Shenhua coal and its macerals[J]. Clean Coal Technology, 2009, 15(5): 71-73.)
-
[9]
[9] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.
-
[10]
[10] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content[J]. Fuel Process Technol, 2002, 77-78: 1-7.
-
[11]
[11] GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE G R. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon, 1995, 33(5): 587-595.
-
[12]
[12] THOMAS S, BRUHL I, HEILMANN D, KLEINPETER E. 13C NMR chemical shift calculations for some substituted pyridines: A comparative consideration[J]. J Chem Inf Comput Sci, 1997, 37(4): 726-730.
-
[13]
[13] KAWASHIMA H, TAKANOHASHI T. Modification of model structures of Upper Freeport coal extracts using 13C NMR chemical shift calculation[J]. Energy Fuels, 2001, 15(3): 591-598.
-
[14]
[14] TREWHELLA M T, POPLETT L J F, GRINT A. A structure of Green River oil shale kerogen: Determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
-
[15]
[15] 彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the Kerogens of Jurassic hydrocarbon source rock in the northen edge, Qaidam Basin[J]. Acta Petrolei Sinica, 2002, 23(2): 34-37.)
-
[16]
[16] 王丽, 张蓬洲, 郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543. (WANG Li, ZHANG Peng-zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid-state NMR spectroscopy[J]. Journal of Fuel Chemistry and Techonology, 1996, 24(6): 539-543.)
-
[17]
[17] SUN X G. The investigation of chemical structure of coal macerals via transmitted-light FR-IR microspectroscopy[J]. Spectrochim Acta Part A, 2005, 62(1-3): 557-564.
-
[18]
[18] KELEMEN S R, AFEWOEKI M, GORBATY M L, KWIATEK P J, SOLUM M S, HU J Z, PUGMIRE R J. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy Fuels, 2002, 16(6): 1507-1515.
-
[19]
[19] GORBATY M L, GEORGE G N, KELEMEN S R. Chemistry of organically bound sulphur forms during the mild oxidation of coal[J]. Fuel, 1990, 69(8): 1065-1067.
-
[20]
[20] VANDENBROUCKE M, LARGEAU C. Kerogen origin, evolution and sreucture[J]. Org Geochem, 2007, 38(5): 719-833.
-
[21]
[21] TAKANOHASHI T, IINO M, NAKAMURA K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy Fuels, 1998, 12(6): 1168-1173.
-
[1]
-
-
-
[1]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[4]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[5]
Yu Xiong , Li-Jun Hu , Jian-Guo Song , Di Zhang , Yi-Shuang Peng , Xiao-Jun Huang , Jian Hong , Bin Zhu , Wen-Cai Ye , Ying Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149
-
[6]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[7]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[8]
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
-
[9]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[10]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[11]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[12]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[13]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[14]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[15]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[16]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[17]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[18]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[19]
Liangyu Gong , Jie Wang , Fengyu Du , Lubin Xu , Chuanli Ma , Shihai Yan , Zhuwei Song , Fuheng Liu , Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023
-
[20]
Haiyuan Wang , Shanshan Cheng , Hui Yang . Development and Exploration of the Ideological and Political Education Framework in Applied Chemistry Postgraduate Curriculum. University Chemistry, 2024, 39(6): 72-82. doi: 10.3866/PKU.DXHX202311020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(308)
- HTML views(12)