Citation: YANG Rui-juan, YANG Dong-hua, WU Zheng-huang, FENG Xiao-na, DOU Tao, WU Zhong-hua, LI Zhi-hong, YAN Ze, WANG Fan, TANG Qiong. Synthesis and characterization of microporous EU-1/ZSM-5 composite zeolite containing iron[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(5): 601-606. shu

Synthesis and characterization of microporous EU-1/ZSM-5 composite zeolite containing iron

  • Corresponding author: YANG Dong-hua, 
  • Received Date: 12 September 2012
    Available Online: 24 December 2012

    Fund Project: 国家重点基础发展规划(973计划,2012CB215002) (973计划,2012CB215002) 国家自然科学基金(20973123) (20973123) 煤转化国家重点实验室开放基金(11-12-603)。 (11-12-603)

  • Microporous EU-1/ZSM-5 composite zeolites containing iron were synthesized using preset crystal seed method. The as-synthesized Fe-EU-1/ZSM-5 samples were characterized by a serious of techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric-derivative thermogravimetric (TG-DTG), N2 adsorption/desorption, UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray absorption fine structure (XAFS). The results show that the composite zeolite is found consisting characteristic diffraction peaks for two kinds of zeolite structure: EU-1 and ZSM-5. The composite zeolite is a kind of molecular dispersion material with two crystal phases interaction and its micropore size is larger than Fe-EU-1 zeolite. With increasing the mass fraction of Fe in the original sol-gel, the characteristic diffraction peaks of composite zeolites in the 23.09° and 23.94° gradually migrate to lower angle direction. UV-vis spectrum shows that there is a broad absorption band at about 220~245 nm. The XAFS results show that the week pre-edge absorption peak for 1s→3d gradually strengthen, at the same time the absorption peak for 1s→4p in the top of absorption edge has tapper. The optimized synthesis conditions for the microporous EU-1/ZSM-5 composite zeolites containing iron are as follows: 0.075%~0.15% of the mass fraction of Fe in the original sol-gel, 15.0%~21.0% of the mass fraction of ZSM-5 zeolite in the original sol-gel and 50~60 of SiO2/Al2O3 mol ratio of ZSM-5 zeolite.
  • 加载中
    1. [1]

      [1] 温倩. 甲醇芳构化技术和经济性分析[J]. 煤化工, 2012, 4(2): 1-4. (WEN Qian. Technical and economic analysis of the aromatization of methanol[J].Coal Chemical Industry, 2012, 4(2): 1-4.)

    2. [2]

      [2] ZAIDI H A, PANT K K. Catalytic conversion of methanol to gasoline range hydrocarbons[J]. Catal Today, 2004, 96(3): 155-160.

    3. [3]

      [3] 田涛, 蹇伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. Ag/ZSM-5催化剂上甲醇芳构化过程[J]. 现代化工, 2009, 29(1): 55-58. (TIAN Tao, JIAN Wei-zhong, SUN Yu-jian, CUI Yu, LU Yan-yan, WEI Fei. Aromatization of methanol on Ag/ZSM-5 catalyst[J]. Modern Chemical Industry, 2009, 29(1): 55-58.)

    4. [4]

      [4] NI Y M, SUN A M, WU X L, HU J L, LI T, LI G X. Aromatization of methanol over La/Zn/HZSM-5 catalysts[J]. Chin J Chem Eng, 2011, 19(3): 439-445.

    5. [5]

      [5] BRISCOE N A, JOHNSON D W, SHANNON M D. The framework topology of zeolite EU-1[J]. Zeolites, 1988, 8(1): 74-76.

    6. [6]

      [6] MIHINDOU-KOUMBA P C, COMPAROT J D, LAFORGE S, MAGNOUX P. Methylcyclohexane transformation over H-EU-1 zeolite: Selectivity and catalytic role of the acid sites located at the pore mouths[J]. J Catal, 2008, 255(2): 324-334.

    7. [7]

      [7] MOREAU F, MOREAU P, GNEP N S, MAGNOUX P, LACOMBE S, GUISNET M. Ethylbenzene isomerization over bifunctional platinum alumina-EUO catalysts: Location of the active sites[J]. Microporous Mesoporous Mater, 2006, 90(1/3): 327-338.

    8. [8]

      [8] 陈新兴, 郭士岭, 陈宜俍, 高雄厚, 张广瑞. 两步晶化法合成L/ZSM-5复合分子筛及其表征[J]. 石油学报(石油加工), 2011, 27(2): 322-327. (CHEN Xin-xing, GUO Shi-ling, CHEN Yi-liang, GAO Xiong-hou, ZHANG Guang-rui. Synthesis by two-step crystallization method and characterization of L/ZSM-5 composite zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(2): 322-327.)

    9. [9]

      [9] 阎萍, 马波, 张喜文, 张志智.EU-1/ZSM-5复合分子筛的合成与表征[J]. 石油炼制与化工, 2011, 42(6): 17-22. (YAN Ping, MA Bo, ZHANG Xi-wen, ZHNAG Zhi-zhi. Synthesis and characterization of EU-1/ZSM-5 composite zeolite[J]. Petroleum Processing and Petrochemicals, 2011, 42(6): 17-22.)

    10. [10]

      [10] 葛超. EU-1及EU-1/ZSM-5复合分子筛的合成研究. 太原: 太原理工大学, 2011. (GE Chao. The studies on the synthesis of EU-1 and EU-1/ZSM-5 composite zeolite. Taiyuan: Taiyuan University of Technology, 2011.)

    11. [11]

      [11] 杨冬花, 赵君芙, 张军亮, 窦涛, 吴忠华, 陈中军. 含铁骨架Fe-Al-EU-1分子筛的设计合成和晶化[J]. 物理化学学报, 2012, 28(3): 720-728. (YANG Dong-hua, ZHAO Jun-fu, ZHANG Jun-liang, DOU Tao, WU Zhong-hua, CHEN Zhong-jun. Designed synthesis and crystallization of Fe-Al-EU-1 zeolites containing framework-iron[J]. Acta Physico-Chimica Sinica, 2012, 28(3): 720-728.)

    12. [12]

      [12] 张立东, 高俊华, 胡津仙, 李文怀, 王建国. Fe/ZSM-5的制备及其催化甲苯/甲醇烷基化反应行为[J]. 化工进展, 2009, 28(8): 1360-1365. (ZHANG Li-dong, GAO Jun-hua, HU Jin-xian, LI Wen-huai, WANG Jian-guo. Preparation of Fe/ZSM-5 and catalytic behavior for toluene alkylation with methanal[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1360-1364.)

    13. [13]

      [13] LI Y, FENG Z C, LIAN Y X, SUN K Q, ZHANG L, JIA G Q, YANG Q H, LI C. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions[J]. Microporous Mesoporous Mater, 2005, 84(1/3): 41-49.

    14. [14]

      [14] SCHWIDDER M, KUMAR M S, BENTRUP U, PÉREZ-RAMÍREZ J, BRVCKNER A, GRVNERT W. The role of Brnsted acidity in the SCR of NO over Fe-MFI catalysts[J]. Microporous Mesoporous Mater, 2008, 111(1/3): 124-133.

    15. [15]

      [15] 董梅, 王建国, 孙予罕, 胡天斗, 刘涛, 谢亚宁. 丝光沸石骨架中Fe的XAFS表征[J]. 化学学报, 2000, 58(11): 1419-1423. (DONG Mei, WANG Jian-guo, SUN Yu-han, HU Tian-dou, LIU Tao, XIE Ya-ning. A XAFS study on the Fe-substituted mordenite[J]. Acta chimica sinica, 2000, 58(11): 1419-1423.)

    16. [16]

      [16] 时启涛, 孙万付, 张志智, 张喜文, 凌风香, 秦波, 闫萍. MOR/EU-1复合分子筛的合成与表征[J]. 当代化工, 2011, 40(3): 260-264. (SHI Qi-tao, SUN Wan-fu, ZHANG Zhi-zhi, ZHANG Xi-wen, LING Feng-xiang, QIN Bo, YAN Ping. Synthesis and characterization of MOR/EU-1 composite molecular sieves[J]. Contemporary Chemical Industry, 2011, 40(3): 260-264.)

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    11. [11]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    17. [17]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    18. [18]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(570)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return