Citation: ZHOU Fu-xun, ZHAO Jian-tao, ZHANG Lei, WU Zhi-wei, WANG Jian-guo, FANG Yi-tian, QIN Zhang-feng. Catalytic deoxidization characteristic of oxygen-bearing coal mine methane in the fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(5): 523-529. shu

Catalytic deoxidization characteristic of oxygen-bearing coal mine methane in the fluidized bed reactor

  • Corresponding author: FANG Yi-tian, 
  • Received Date: 24 December 2012
    Available Online: 22 January 2013

    Fund Project: 山西省科技重大专项(20111101005)。 (20111101005)

  • The catalytic deoxygenating experiment of oxygen-bearing coal mine methane (CMM) was carried out in a bench-scale fluidized bed reactor with the spherical Cu-based catalyst. The effects of the bed temperature, the particle size and the space velocity were investigated on the oxygen removal efficiency and CO2 selectivity. The raising bed temperature could promote the O2 conversion due to the high activity of the catalyst. The O2 conversion could reach more than 95% when the temperature was above 450 ℃. The smaller particle size was beneficial to the CO2 selectivity of the catalyst because of the decreasing inner diffusion resistance. The lower space velocity also could improve the O2 removal efficiency when the bed temperature was below 450 ℃ although the improvement almost disappears above 450 ℃ due to the increasing catalytic combustion rate. Additionally, by adjusting the CH4/Air ratio, the catalytic deoxygenation adaptability of the fluidized bed reactor and the catalyst was evaluated for the variable oxygen content in CMM. The results indicate that the process has a perfect oxygen removal performance with the O2 concentration less than 0.2% and the CO2 selectivity more than 98% for the O2 content from 5% to 15% in the simulated CMM.
  • 加载中
    1. [1]

      [1] LUO D K, DAI Y J. Economic evaluation of coalbed methane production in China[J]. Energy Policy, 2009, 37(10): 3883-3889.

    2. [2]

      [2] 郑珩, 陈耀壮, 廖炯, 马磊, 曾健. 煤层气脱氧制CNG/LNG技术开发[J]. 化工进展, 2010, 29(S1): 337-341.(ZHENG Yan, CHEN Yao-zhuang, LIAO Jiong, MA Lei, ZENG Jian. Technology Development of coalbed methane prepare CNG/LNG. Chemlcal Industry and Engineering Progress, 2010, 29(S1): 337-341.)

    3. [3]

      [3] 国家发展和改革委员会, 煤层气(煤矿瓦斯)开发利用"十一五"规划[Z]. 国家发展和改革委员会, 2006.(The national development and the reform committee. The utilization of coalbed methane (coal mine gas) in "The 11th five-year plan"[Z]. The national development and the reform committee, 2006.)

    4. [4]

      [4] 国家发展和改革委员会, 煤层气(煤矿瓦斯)开发利用"十二五"规划[Z]. 国家发展和改革委员会, 2011.(The national development and the reform committee. The utilization of coalbed methane (coal mine gas) in "The 12nd five-year plan"[Z]. The national development and the reform committee, 2011.)

    5. [5]

      [5] LANDI G, BARBATO P S, CIMINO S, LISI L, RUSSO G. Fuel-rich methane combustion over Rh-LaMnO3 honeycomb catalysts[J]. Catal Today, 2010, 155(1-2): 27-34.

    6. [6]

      [6] 王树东, 袁中山, 王胜, 张纯希, 倪长军. 一种煤层气脱氧催化剂、其制备方法及应用:中国,公开号:CN101664679A[P].2010-03-10.(WANG Shu-dong,YUAN Zhong-shan,WANG Sheng,ZHANG Chun-xi,NI Chang-jun. A kind of oxygen-bearing coal mine methane deoxidization catalyst, its preparation and utilization: CN, 101664679A[P]. 2010-03-10.)

    7. [7]

      [7] LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Process Technol, 1995, 42(2): 339-359.

    8. [8]

      [8] SU S, AGNEW J. Catalytic combustion of coal mine ventilation air methane[J]. Fuel, 2006, 85(9): 1201-1210.

    9. [9]

      [9] DENG Y, NEVELL T G. Oscillations of methane combustion over alumina-supported palladium catalysts under oxygen-deficient conditions[J]. J Mol Catal A, 1999, 142(1): 51-60.

    10. [10]

      [10] 廖炯, 陈耀壮, 胡善霖, 姚松柏, 雷菊梅, 白燕. 一种含氧煤层气脱氧催化剂及其制备方法及应用: 中国, 公开号: CN101322942A[P]. 2008-12-17.(LIAO Jiong,CHEN Yao-zhuang,HU Shan-lin,YAO Song-bai,LEI Ju-mei,BAI Yan. A kind of oxygen-bearing coal mine methane deoxidization catalyst and its preparation, utilization: CN, 101322942A[P]. 2008-12-17.)

    11. [11]

      [11] 董卫果, 李雪飞, 王鹏, 徐春霞, 杨宗仁, 文芳, 张科达, 李小亮, 国晖, 刘春兰, 段超, 吴涛. 一种煤层气脱氧和浓缩分离甲烷的方法: 中国, 公开号: CN101921642A[P]. 2010-12-22.(DONG Wei-guo, LI Xue-fei, WANG Peng, XU Chun-yan, YANG Zong-ren, WEN Fang, ZAHNG Ke-da, LI Xiao-liang, GUO Hui, LIU Chun-lan, DUAN Chao, WU Hao. A process of coal mine methane deoxidization, concentration and separation of methane: CN, 101921642A[P]. 2010-12-22.)

    12. [12]

      [12] 张力, 张俊广, 杨仲卿, 唐强. 超低浓度甲烷在Cu/γ-Al2O3催化剂颗粒流化床中的燃烧特性[J]. 燃料化学学报, 2012, 40(7): 886-891.(ZHANG Li, ZHANG Jun-guang, YANG Zhong-qing, TANG Qiang. Combustion characteristics of ultra-low content methane in a fluidized bed reactor with Cu/[WTBZ]γ[WTB1]-Al2O3 as catalytic particles[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 886-891.)

    13. [13]

      [13] LYUBOVSKY M, SMITH L L, CASTALDI M, KARIM H, NENTWICK B, ETEMAD S, LAPIERRE R, PFEFFERLE W C. Catalytic combustion over platinum group catalysts: Fuel-lean versus fuel-rich operation[J]. Catal Today, 2003, 83(1-4): 71-84.

    14. [14]

      [14] 陈甘棠. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2007.(CHEN Gan-tang. Chemical reaction engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2007.)

    15. [15]

      [15] 常剑, 高金森, 徐春明. 大颗粒FCC汽油芳构化催化剂表面烧焦过程的数值模拟[J]. 燃料化学学报, 2007, 35(4): 423-430.(CHANG Jian, GAO Jin-sen, XU Chun-ming. Simulation of the regeneration of large particle FCC naphtha aromatization catalyst[J]. Journal of Fuel Chemistry and Technology, 2007, 35(4): 423-430.)

    16. [16]

      [16] TRIMM D L, LAM C W. The combustion of methane on platinum-alumina fibre catalysts-I: Kinetics and mechanism[J]. Chem Eng Sci, 1980, 35(6): 1405-1413.

    17. [17]

      [17] MOUADDIB N, FEUMI-JANTOU C, GARBOWSKI E, PRIMET M, Catalytic oxidation of methane over palladium supported on alumina: Influence of the oxygen-to-methane ratio[J]. Appl Catal A, 1992, 87(1): 129-144.

    18. [18]

      [18] ÖZGEN KARACANA C, RUIZ F A, COTC M, PHIPPS S, Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J], Int J Coal Geol, 2011, 86(2/3): 121-156.

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    3. [3]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    4. [4]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    11. [11]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    14. [14]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    15. [15]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return