Citation: TANG Nian, PAN Si-wei. Study on mercury emission and migration from large-scale pulverized coal-fired boiler[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 484-490. shu

Study on mercury emission and migration from large-scale pulverized coal-fired boiler

  • Corresponding author: TANG Nian, 
  • Received Date: 19 October 2012
    Available Online: 13 December 2012

    Fund Project: 南方电网科技项目(K-GD2012-360). (K-GD2012-360)

  • In order to study the characteristics of mercury emission and migration, EPA 30B method was used to determine the Hg concentrations in flue gases emitted from four typical pulverized coal-fired boilers in a large-scale power plant, and the Hg contents of related input/output materials in two of these boilers were also analyzed and compared. According to mass balance, the Hg distribution in different materials was obtained, and then the effect of major flue gas purification systems including selective catalytic reduction (SCR), electrostatic precipitation (ESP) and wet flue gas desulfurization (WFGD) on Hg emission was clarified. Based on these, the migration pattern of Hg in pulverized coal-fired boilers was summarized systematically. Experimental results indicated that Hg emissions of all the four boilers were below 3 μg/m3, which was much lower than the limit specified by the new Chinese national standard. The emission was even significantly lowered when SCR system was located upstream. The reason was in the fact that, when there was SCR system located, lots of Hg0 in flue gas could be catalyzed to Hg2+ and then adsorbed by fly ash. The solubility of Hg2+ was much higher than that of Hg0 in WFGD system, and the major Hg speciation in exhaust flue gas was Hg0. Most of the Hg absorbed in WFGD was transferred into desulfurization gypsum, while the enrichment in both desulfurization waste water and bottom ash was limited.
  • 加载中
    1. [1]

      [1] LEE W, BAE G N. Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts[J]. Environ Sci Technol, 2009, 43(5): 1522-1527.

    2. [2]

      [2] UDDIN M A, YAMADA T, OCHIAI R, and SASAOK E. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J]. Energy Fuels, 2008, 22(4): 2284-2289.

    3. [3]

      [3] LI J F, YAN N Q, QU Z. Catalytic oxidation of elemental mercury over the modified catalyst Mn-α-Al2O3 at lower temperatures[J]. Environ Sci Technol, 2010, 44(1): 426-431.

    4. [4]

      [4] NRIAGU Q J, PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333(6169): 134-139.

    5. [5]

      [5] WU Y J, WANG S X, STREETS D G, HAO J M, CHAN M, JIANG J K. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environ Sci Technol, 2006, 40(17): 5312-5318.

    6. [6]

      [6] 王运军, 段钰锋, 杨立国, 孟素丽, 黄治军, 吴成军, 王乾. 湿法烟气脱硫装置和静电除尘器联合脱除烟气中汞的试验研究[J]. 中国电机工程学报, 2008, 28(29): 64-69. (WANG Yun-jun, DUAN Yu-feng, YANG Li-guo,MENG Su-li, HUANG Zhi-jun, WU Cheng-jun,WANG Qian. Experimental study on mercury removal by combined wet flue gas desulphurization with electrostatic precipitator[J]. Proceedings of the CSEE, 2008, 28(29): 64-69.)

    7. [7]

      [7] 钟丽萍, 曹晏, 李文英, 潘伟平, 谢克昌. 燃煤电厂污染控制单元对汞释放的控制作用[J]. 燃料化学学报, 2010, 38(6): 641-646. (ZHONG Li-ping, CAO Yan, LI Wen-ying, PAN Wei-ping,XIE Ke-chang. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. Joumal of Fuel Chemistry and Technology, 2010, 38(6): 641-646.)

    8. [8]

      [8] 陈进生, 袁东星, 李权龙, 郑剑铭, 朱燕群, 华晓宇, 何胜, 周劲松. 燃煤烟气净化设施对汞排放特性的影响[J]. 中国电机工程学报, 2008, 28(2): 72-76. (CHEN Jin-sheng, YUAN Dong-xing, LI Quan-long,ZHENG Jian-ming, ZHU Yan-qun, HUA Xiao-yu, HE Sheng, ZHOU Jin-song. Effect of flue-gas cleaning devices on mercury emission from coal-fired boiler[J]. Proceedings of the CSEE, 2008, 28(2): 72-76.)

    9. [9]

      [9] YOKOYAMA T, ASAKURA K. Mercury emissions from a coal fired power plant in Japan[J]. Sci Total Environ, 2000, 259(1-3): 97-103.

    10. [10]

      [10] LICATA A, FEY W. Advanced technology to control mercury emission. A-DOE-EPRI Mega Symposium, Arlington Heights, Illinois, 2001, 8(20-24).

    11. [11]

      [11] ESWARAN S,STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy Fuels, 2005, 19(6): 2328-2334.

    12. [12]

      [12] KAMATA H, UEMO S I, NAITO T, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008, 47(21): 8136-8141.

    13. [13]

      [13] LEE C W, SRIVASTAVA R K, GHORISHI S B, HASTINGS T W, STEVENS F M. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J]. J Air Waste Manage Assoc, 2004, 54(12):1560-1566.

    14. [14]

      [14] 朱珍锦, 薛来, 谈仪, 张长鲁, 李永光, 章德龙, 王启杰, 潘丽华, 柯建新. 300 MW煤粉锅炉燃烧产物中汞的分布特征研究[J]. 动力工程, 2002, 22(1): 1594-1597. (ZHU Zhen-jin, XUE Lai, TAN Yi, ZHANG Chang-lu,LI Yong-guang, ZHANG De-long, WANG Qi-jie,PAN Li-hua, KE Jian-xin. Study on the mercury distribution of combustion products for 300 MW pulverized coal—fired boiler[J]. Power Engineering, 2002, 22(1): 1594-1597.)

    15. [15]

      [15] 杨立国, 段钰锋, 范晓旭. 汞在燃煤固态产物中的富集规律及其影响因素[J]. 燃烧科学与技术, 2010, 16(6): 485-490. (YANG Li-guo, DUAN Yu-feng, FAN Xiao-xu. Enrichment characteristics of mercury in solid products of coal-fired power plants and influencing factors[J]. Journal of Combustion Science and Technology, 2010, 16(6): 485-490.)

    16. [16]

      [16] 卢平, 吴江, 李传统. 100 MW燃煤电站汞排放及其形态分布[J]. 上海电力学院学报, 2009, 25(5): 473-477. (LU Ping, WU Jiang, LI Chuan-tong. Mercury emission and its speciation from a 100 MW coal-fired power plant[J]. Journal of Shanghai University of Electric Power, 2009, 25(5): 473-477.)

    17. [17]

      [17] MILLER C, FEELEY T J, ALIOE W W. Mercury capture and fate using wet FGD at coal-fired power plant. DOE/NTEL Mercury and Wet FGD R&D Meeting, 2006, 8.

    18. [18]

      [18] AGARWAL H, STENGER H G. Effects of H2O, SO2, and NO on homogeneous Hg oxidation by Cl2[J]. Energy Fuels, 2006, 20(3): 1068-1075.

    19. [19]

      [19] 王运军, 段钰锋, 杨立国, 江贻满. 600 MW燃煤电站烟气汞形态转化影响因素分析[J]. 热能动力工程, 2008, 23(4): 399-403. (WANG Yun-jun, DUAN Yu-feng, YANG Li-guo,JIANG Yi-man. Factors affecting the transformation of Hg speciation for 600 MW coal—fired boiler[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(4): 399-403.)

  • 加载中
    1. [1]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(388)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return