Citation: LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 469-476. shu

CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials

  • Corresponding author: ZHANG Kai, 
  • Received Date: 29 September 2012
    Available Online: 11 December 2012

    Fund Project: 国家自然科学基金 (51061130538) (51061130538) 国家高技术发展研究计划(863计划, 2012AA06A115) (863计划, 2012AA06A115) 111引智计划(B12034). (B12034)

  • The adsorption properties of CO2 on MCM-41 mesoporous materials impregnated with ethylenediamine (EDA), tetraethylenepentamine (TEPA) and two kinds of polyethylenimines (PEI600 and PEI1800), respectively, were studied with mass spectrometry (MS) and thermogravimetry (TG) techniques. The sample obtained by impregnating EDA (EDA-MCM-41) showed a low CO2 adsorption capacity due to the ready volatilization of EDA, while those samples prepared by TEPA (TEPA-MCM-41), PEI600 (PEI600-MCM-41) or PEI1800 (PEI1800-MCM-41) exbibit higher adsorption capacity and thermal stability although the adsorption capacity decreased with increasing molecular weight of amines. A maximum CO2 adsorption capacity of 2.7 mmol/g was achieved on the TEPA-MCM-41 with 40% TEPA. When this sample was regenerated at 100 ℃ under pure nitrogen atmosphere, its CO2 adsorption capacity was decreased by 7.4% after ten recycles in contrast to less than 1% for both PEI600-MCM-41 and PEI1800-MCM-41. However, when the regeneration atmosphere was changed to 80% CO2/20% N2, the regeneration temperature should be be increased to more than 160 ℃ for all the samples despite that PEI-MCM-41 showed high thermal stability than TEPA-MCM-41.
  • 加载中
    1. [1]

      [1] SONG C.Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J] . Catal Today, 2006, 115(1): 2-32.

    2. [2]

      [2] ZHAO X S, LU G Q, WHITTAKER A K, MILLAR G J, ZHU H Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA[J]. J Chem Phys, 1997, 101(33): 6525-6531.

    3. [3]

      [3] HUANG H Y, YANG R T, CHINN D, MUNSON C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind Eng Chem Res, 2003, 42(12): 2427- 2433.

    4. [4]

      [4] HARLICK P J E, SAYARI A. Applications of pore-expanded mesoporous silicas. 3-triamine silane grafting for enhanced CO2 adsorption[J]. Ind Eng Chem Res, 2006, 45(9): 3248-3255.

    5. [5]

      [5] WEI J W, SHI J J, PAN H, SU Q F, ZHU J B, SHI Y. Hermal and hydrothermal stability of amino-functionalized SBA-16 and promotion of hydrophobicity by silylation[J] . Micro Mesoporous Mater, 2009, 117(3):596-602.

    6. [6]

      [6] HICKS J C, DRESE J H, FAUTH D J, GRAY M L, Qi G G, JONES C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. J Am Chem Soc, 2008, 130(10): 2902-2903.

    7. [7]

      [7] KNOFEL C, DESCARPENTRIES J, BENZAOUIA A, ZELENAK V, MORNET S, LLEWELLYN P L, HORNEBECQ V. Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide[J]. Microporous Mesoporous Mater, 2007, 99(1): 79-85.

    8. [8]

      [8] LIU X W, ZHOU L, FU X, SUN Y, SU W, ZHOU Y P. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4[J]. Chem Eng Sci, 2007, 62(4) : 1101-1110.

    9. [9]

      [9] CHANG A C C, CHUANG S S C, GRAY M, SOONG Y. In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl) triethoxysilane[J]. Energy Fuels, 2003, 17(2): 468-473.

    10. [10]

      [10] XU X H, WU H S, DUAN J F, WANG F, JIN F, LEE Z Y. Statistical approach for the optimal deposition of Cr underlayer for SmCo/Cr magnetic films[J]. Appl Sur Sci, 2003, 218(1): 29-33.

    11. [11]

      [11] KNOWLES G P, GRAHAM J V, DELANEY S W, CHAFFEE A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents[J]. Fuel Process Technol, 2005, 86(14/15): 1435-1448.

    12. [12]

      [12] HUANG H Y, YANG R, CHINN D. Amine grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind Eng Chem Res, 2003, 42(12): 2427-2433.

    13. [13]

      [13] KHATRI RAJESH A, CHUANG STEVEN S C,SOONG Y. Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture[J]. Energy Fuels, 2006, 20(4): 1514-1520.

    14. [14]

      [14] WEI J W, LIAO L, XIAO Y, ZHANG P, SHI Y. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41[J]. J Environ Sci.2010, 22(10) : 1558-1563.

    15. [15]

      [15] XU X, SONG C, ANDRESEN J M, MILLER B G,SCARONI A W.Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture [J] .Energy Fuels , 2002, 16(6): 1463-1469.

    16. [16]

      [16] XU X C, SONG C S, ANDRESEN JOHN M , MILLER BRUCE G, SCARONI A W. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous Mesoporous Mater, 2003, 62(1): 29-46.

    17. [17]

      [17] YUE M B, CHUN Y, CAO Y,DONG X, ZHU J H. Novel CO2-capturer derived from the as-prepared SBA-15 occluded by template[J]. Adv Func Mater, 2006, 16(13): 1717-1722.

    18. [18]

      [18] HEYDARI-GORGI A, BELMABKHOUT Y, SAYARI A. Polyethylenimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption[J]. Langmuir, 2011, 27(20): 12411-12416.

    19. [19]

      [19] GRAY M L, CHAMPAGNE K J, FAUTH D. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide[J]. Int J Greenhouse Gas Control, 2008, 2(1): 3-8.

    20. [20]

      [20] SON W, CHOI J, AHN W. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous Mesoporous Mater. 2008, 113(1-3): 31-40.

    21. [21]

      [21] 闻霞, 孙楠楠, 李碧, 李军平, 王峰, 赵宁, 肖福魁, 魏伟, 孙予罕, 任泽厚, 郭金刚, 王志杰, 李庆, 吴志斌. MgO /Al2O3吸附剂对CO2 动态吸附性能的研究[J]. 燃料化学学报, 2010, 38(2): 247-251. (WEN Xia, SUN Nan-nan, LI B, LI Jun-ping, WANG Feng, ZHAO Ning, XIAO Fu-ku,WEI Wei,SUN Yun-han, REN Ze-hou, GUO Jin-gang, WANG Zhi-jie, LI Qing, WU Zhi-bin. Dynamic adsorption study of CO2 adsorption by MgO /Al2O3 [J]. Journal of Fuel Chemistry and Technology, 2010, 38(2): 247-251. )

    22. [22]

      [22] 李 碧, 闻霞, 赵宁, 王秀枝, 魏伟, 孙予罕, 任泽厚, 王志杰. 高稳定性介孔MgO-ZrO2 固体碱的制备及其高温CO2 吸附性能[J]. 燃料化学学报, 2010, 38( 4 ): 473-477. (LI Bi, WEN Xia, ZHAO Ning, WANG Xiu-zhi, WEI Wei, SUN Yu-han, REN Ze-hou, WANG Zhi-jie. Preparation of high stability MgO-ZrO2 solid base and its high temperature CO2 capture properties[J]. Journal of Fuel Chemistry and Technology, 2010, 38(4): 473-477.

    23. [23]

      [23] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. (XU Ru-ren, PANG Xiu-qing. Chemistry: Zeolites and Porous[M]. Beijing: Science Press, 2004)

    24. [24]

      [24] 付新, 王冬华. 聚乙烯亚胺修饰的介孔材料对CO2的吸附性能[J]. 化工新型材料, 2011, 39(11): 90-92. (FU Xin, WANG Dong-hua.CO2 adsorption on mesoporous molecular sieves modified by polyethylenemine[J]. New Chemical Materials, 2011, 39(11): 90-92).

    25. [25]

      [25] HIYOSHI N, YOGO K, YASHIMA T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J]. Microporous Mesoporous Mater, 2005, 84(1/3): 357-365.

    26. [26]

      [26] KNOWLES G P, GRAHAM J V, DELANEY S W, CHAEE A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Process Technol[J], 2005, 86(14/15): 1435-1448.

    27. [27]

      [27] YAN X L, ZHANG L, ZHANG Y, QIAO K, YAN Z F, KOMARNENI S. Amine-modified mesocellular silica foams for CO2 capture[J]. Chem Eng J, 2011, 168(2): 918-924.

    28. [28]

      [28] 赵会玲,胡军,汪建军,周丽绘,刘洪. 介孔材料氨基表面修饰及其对CO2 的吸附性能[J]. 物理化学学报, 2007, 23(6): 801- 806. (ZHAO Hui-Ling, HU Jun, WANG Jian-Jun, ZHOU Li-Hui, LIU Hong-Lai. CO2 capture by the amine-modified mesoporous materials[J]. Acta Physico-chimica Sinica , 2007, 23(06): 801-806.)

    29. [29]

      [29] WANG X R, LI H Q, LIU H T, HOU X J. AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption[J]. Microporous Mesoporous Mater.2011, 142: 564-569.

    30. [30]

      [30] LIU L C, LI H Q, ZHANG Y. A comparative study on catalytic performances of chromium incorporated and supported mesoporous MSU-x catalysts for the oxidehydrogenation of ethane to ethylene with carbon dioxide[J]. Catal Today, 2006, 115(1/4): 235-241.

    31. [31]

      [31] 康平平, 宋文生, 韩冰冰, 许双双. 乙二胺基乙磺酸钠的合成与表征[J]. 有机化学, 2009. 29(6): 904-908 (KANG Ping-ping, SONG Wen-sheng, HAN Bing-bing. XU Shuang-shuang. Synthesis and characterization of aliphatic diamine sulphonate[J]. Chinese Journal of Organic Chemistry, 2009, 29(6): 904-908.)

    32. [32]

      [32] YUE M B, SUN L B, CAO Y, WANG Y, WANG Z J, ZHU J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J].Chem Euro J, 2008, 14(11): 3442-3451

    33. [33]

      [33] KHATRI R, CHUANG S C, SOONG Y, GRAY M. Carbon dioxide capture by diamine-grafted SBA-15: A combined fourier transform infrared and mass spectrometry study [J]. Ind Eng Chem Res, 2005, 44(10): 3702-3708.

    34. [34]

      [34] WANG X X, SCHWARTZ V, CLARK J C, MA M L, OVERBURY S H, XU X C, SONG C S. Infrared study of CO2 sorption over "Molecular Basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve[J].J Phy Chem, 2009, 113(17): 7260-7268.

    35. [35]

      [35] GOEPPERT A, CZAUN M, MAY R B, PRAKASH G K S, OLAH G A, NARAYANAN S R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. J Am Chem Soc, 2011, 133(50): 20164-20167.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    14. [14]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return