Citation: YU Yu-xiao, XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, ZHANG Xing-hua, ZHANG Xue. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 443-448. shu

In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol

  • Corresponding author: WANG Tie-jun, 
  • Received Date: 13 November 2012
    Available Online: 19 January 2013

    Fund Project: 国家自然科学基金(51106108, 51106167) (51106108, 51106167) 国家高技术研究发展计划(863计划, 2012AA051801). (863计划, 2012AA051801)

  • The integrated process of aqueous phase reforming of methanol for hydrogen and hydrogenation of phenol and guaiacol, two lignin model compounds, was conducted with Raney Ni catalyst in this work. The effects of pressure, temperature, reaction time and mixture ratio of reactants on the performance of in-situ hydrogenation of lignin depolymerization model compounds were investigated. The mechanism was also discussed. Results showed that the guaiacol conversion and cyclohexanol selectivity reached 99.00% and 93.74% with time-on-stream of 7 h, while the phenol conversion and cyclohexanol selectivity were 90.50% and 99.29% with time-on-stream of 12 h under the optimal conditions of 220 ℃, initial pressure of 0 MPa(gauge pressure) and mole ratio of water/methanol/feedstock=20/5/0.8. The in-situ hydrogenation of phenolic compounds was also proved to be superior to the hydrogenation system of phenols with external hydrogen supply. This work provides a new alternative for production of chemicals from the depolymerization products of lignin.
  • 加载中
    1. [1]

      [1] KLEINERT M, BARTH T. Phenols from lignin[J]. Chem Eng Technol, 2008, 31(5): 736-745.

    2. [2]

      [2] 朱清时. 化学的绿色化和绿色植的化学转化[J]. 世界科技研究与发展, 1998, 20(2): 12-17. (ZHU Qing-shi. Greenization of chemistry and chemical transformation of green plants[J]. Research and Development of the World Science and Technology, 1998, 20(2): 12-17.)

    3. [3]

      [3] 蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2008. (JIANG Ting-da. Lignin[M]. Version 2, Beijing: Chemical Industry Press, 2008.)

    4. [4]

      [4] ZAKZESKI J, BRUIJNINCXP C A, JONGERIUS A L, WECKHUYSEN B M. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev, 2010, 110(6): 3552-3599.

    5. [5]

      [5] SAISU M, SATO T, WATANABE M, ADSCHIRI T, ARAI K. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy Fuels, 2003, 17(4): 922-928.

    6. [6]

      [6] SHABTAI J S, ZMIERCZAK W W, CHORNET E. Process for conversion of lignin to reformulated hydrocarbon gasoline: US, 5959167A. 1999-09-28.

    7. [7]

      [7] BUI V N, LAURENTI D, AFANASIEV P, GEANTET C. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity[J]. Appl Catal B, 2011, 101(3): 239-245.

    8. [8]

      [8] YAN N, ZHAO C, DYSON P J, WANG C, LIU L, KOU Y. Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J]. ChemSusChem, 2008, 1(7): 626-629.

    9. [9]

      [9] CHO R L, JI S Y, YOUNG W S, JAE W C, JEONG M H, DONG J S, YOUNG K P. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catal Commun, 2012, 17: 54-58.

    10. [10]

      [10] 王威燕, 张小哲, 杨运泉, 杨彦松, 彭会左, 罗和安. La-Ni-Mo-B非晶态催化剂的制备及其苯酚加氢脱氧催化性能[J]. 物理化学学报, 2012, 28(5): 1243-1251. (WANG Wei-yan, ZHANG Xiao-zhe, YANG Yun-quan, YANG Yan-song, PENG Hui-zuo,LUO He-An. Preparation of La-Ni-Mo-B amorphous catalyst and its catalytic properties for hydrodeoxygenation of phenol[J]. Acta Physico-Chimica sinica, 2012, 28(5): 1243-1251.)

    11. [11]

      [11] 李小年, 项益智. 一类新的液相催化氢化反应体系[J]. 中国科学B辑: 化学, 2007, 37(2): 136-142. (LI Xiao-nian, XIANG Yi-zhi. A new liquid phase catalytic hydrogenation reaction system[J].Science China Chemistry, 2007, 37(2): 136-142.)

    12. [12]

      [12] 曹晓霞, 项益智, 卢春山, 马磊, 张群峰, 李小年. 甲醇水相重整制氢原位还原糠醛制备糠醇[J]. 稀有金属材料与工程, 2010, 39(S2): 516-520. (CAO Xiao-xia, XIANG Yi-zhi, LU Chun-shan, MA Lei, ZHANG Qun-feng, LI Xiao-nian. In-situ reduction of furfural to furfuryl alcohol with hydrogen derived from aqueous-phase reforming of methanol[J]. Rare Metal Materials and Engineering, 2010, 39(S2): 516-520)

    13. [13]

      [13] XIANG Y Z, KONG L N, LU C S, MA L, LI X N. Lanthanum-promoted Pd/Al2O3 catalysts for liquid phase in situ hydrogenation of phenol to cyclohexanone[J]. Reac Kinet, Mech and Catal, 2010, 100(1): 227-235.

    14. [14]

      [14] HUBER G W, SHABAKER J W, DUMESIC J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science, 2003, 300: 2074-2077.

    15. [15]

      [15] DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. Appl Catal B, 2005(56): 171-186.

    16. [16]

      [16] 白赢, 卢春山, 马磊, 陈萍, 郑遗凡, 李小年. Ce和Mg改性的γ-Al2O3负载Pt催化剂催化乙二醇水相重整制氢[J]. 催化学报, 2006, 27(3): 275-280. (BAI Ying, LU Chun-shan, MA Lei, CHEN Ping, ZHENG Yi-fan, LI Xiao-nian. Hydrogen Production by Aqueous-Phase Reforming of Ethylene Glycol over Pt Catalysts Supported on γ-A12O3 Modified with Ce and Mg[J]. Chinese Journal of Catalysis, 2006, 27(3): 275-280.)

  • 加载中
    1. [1]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    2. [2]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    8. [8]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(798)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return