Citation: WU Lei, ZHOU Zhi-jie, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(4): 422-429. shu

Structure changes and gasification reactivity of CWS char from Shenfu coal rapid pyrolysis

  • Corresponding author: ZHOU Zhi-jie, 
  • Received Date: 16 August 2012
    Available Online: 14 October 2012

  • The rapid pyrolysis of the CWS and raw coal from Shenfu coalfield was carried out in a high-frequency furnace. The pyrolysis temperature ranged from 600 ℃ to 1 200 ℃ with an interval of 100 ℃. The effects of temperature on the yields of char and char-C were investigated. The structure of chars obtained were characterized by using XRD, N2 gas adsorption method and SEM; and the CO2 gasification reactivity of chars was examined using TGA (thermogravimetric analyzer). The results show that with the increasing of pyrolysis temperature, the yields of char and char-C for both CWS and raw coal decrease. When the pyrolysis temperature is lower than 900 ℃, the yields of char and char-C for CWS are nearly the same as that for raw coal, and when the pyrolysis temperature is higher than 900 ℃,the yields of char and char-C for CWS become much lower than those for raw coal. The degree of graphitization and the regularity of microcrystal structure of CWS chars are slightly higher than that of raw coal chars, and the specific surface area of CWS chars is also much higher than that of raw coal chars. The gasification reactivity of CWS chars is greater than that of raw coal chars.
  • 加载中
    1. [1]

      [1] NELSON P F, SMITH I W, TYLER R J, MACKIES J C. Pyrolysis of coal at high temperature[J]. Energy Fuels, 1988, 2(4): 391-400.

    2. [2]

      [2] SOLOMON P R, SERIO M A, CARANGELO R M, MARKHAM J R. Very rapid coal pyrolysis[J]. Fuel, 1986, 65(2): 182-194.

    3. [3]

      [3] 李庆钊, 赵长遂, 陈晓平, 武卫芳, 李英杰. O2/CO2气氛煤焦的燃烧及其空隙结构变化[J]. 化工学报,2008, 59(11): 2891-2897. (LI Qing-zhao, ZHAO Chang-sui, CHEN Xiao-ping, WU Wei-fang, LI Ying-jie. Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development[J]. Journal of Chemical Industry and Engineering(China),2008, 59(11): 2891-2897.)

    4. [4]

      [4] 王杰, 颜涌捷, 薛为岚, 陈林, 王劲. 神府烟煤和黄天棉褐煤的快速热解[J]. 华东化工学院学报,1993, 19(4): 432-436. (WANG Jie, YAN Yong-jie, XUE Wei-lan, CHEN Lin, WANG Jin. Rapid pyrolysis of Shenfu bituminous coal and Huangtianmian lignite[J]. Journal of East China Institute of Chemical Technology, 1993, 19(4): 432-436.)

    5. [5]

      [5] 金晶, 张忠孝, 张建民. 再燃条件下超细煤粉热解碳氢组分的析出特性[J]. 化工学报, 2007, 58(1): 217-221. (JIN Jing, ZHANG Zhong-xiao, ZHANG Jian-min. Release behavior of hydrocarbon components of superfine pulverized coal pyrolyzed under reburning conditions[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(1): 217-221.)

    6. [6]

      [6] 周军, 张海, 吕俊复, 岳光溪. 高温下热解温度对煤焦孔隙结构的影响[J]. 燃料化学学报, 2007, 35(2): 155-159. (ZHOU Jun, ZHANG Hai, LU Jun-fu, YUE Guang-xi. Effect of pyrolysis temperature on porous structure of anthracite chars produced at high temperature[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 155-159.)

    7. [7]

      [7] WANG H, JIANG X, LIU H, WU S. Fast pyrolysis comparison of coal-water slurry with its parent coal in Curie-Point pyrolyser[J]. Energy Convers Manage, 2009, 50(8): 1976-1980.

    8. [8]

      [8] 孟德润, 赵翔, 周俊虎, 岑可法. 水煤浆热解过程中HCN和NH3释放特性的分析[J]. 热能动力工程, 2006, 21(4): 394-396. (MENG De-run, ZHAO Xiang, ZHOU Jun-hu, CEN Ke-fa. Formation of HCN and NH3 during the pyrolysis of coal-water slurry[J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(4): 394-396.)

    9. [9]

      [9] 王辉, 姜秀明, 袁德权, 万鹏. 水煤浆挥发分热解的FG-DVC模型[J]. 化工学报, 2006, 57(10): 2428-2432. (WANG Hui, JIANG Xiu-min, YUAN De-quan, WAN Peng. Pyrolysis of coal water slurry volatile matter by using FG-DVC model[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(10): 2428-2432.)

    10. [10]

      [10] 齐永锋, 章明川, 张健, 田风国. 超细煤粉快速热解动力学特性试验研究[J]. 化学工程, 2009, (3): 62-65, 74. (QI Yong-feng, ZHANG Ming-chuan, ZHANG Jian, TIAN Feng-guo. Experimental investigation on fast pyrolysis kinetic characteristics of micro-pulverized coal[J]. Chemical Engineering(China), 2009(3): 62-65, 74.)

    11. [11]

      [11] CHEN L, ZENG C, GUO X, MAO Y, ZHANG Y , ZHANG X, LI W, LONG Y, ZHU H, EITENEER B, ZAMANSKY V. Gas evolution kinetics of two coal samples during rapid pyrolysis[J]. Fuel Process Technol, 2010, 91(8): 848-852

    12. [12]

      [12] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社, 2002: 94-99. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 94-99.)

    13. [13]

      [13] LIMING L, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4): 869-876.

    14. [14]

      [14] 常海州, 蔡雪梅, 李改仙, 白官, 吕秀清. 不同还原程度煤显微组分堆垛结构表征[J]. 山西大学学报(自然科学版), 2008, 31(2): 223-227. (CHANG Hai-zhoug, CAI Xue-mei, LI Gai-xian, BAI Guan, LV Xiu-qing. Characterization for the stacking structure of coal macerals with different type reductivity[J]. Journal of Shanxi University(Nat.Sci.Ed), 2008, 31(2): 223-227.)

    15. [15]

      [15] BRAGG W L. The diffraction of short electromagnetic waves by a crystal[J]. Proceedings of the Cambridge Philosophical Society, 1913, 17: 43-57.

    16. [16]

      [16] PATTERSON A. The Scherrer formula for X-ray partical size determination[J]. Phys Rev, 1939, 56: 978-982.

    17. [17]

      [17] 杨帆, 周志杰, 王辅臣, 刘海峰, 龚欣, 于遵宏. 氢气存在下的煤焦水蒸气气化:Ⅰ反应特性研究[J]. 燃料化学学报, 2009, 37(1): 36-41. (YANG Fan, ZHOU Zhi-jie, WANG Fu-chen, LIU Hai-feng, GONG Xin, YU Zhong-hong. Coal char gasification with steam and H2:ⅠThe gasification reaction characteristics[J]. Journal of Fuel Chemistry and Technology, 2009, 37(1): 36-41.)

  • 加载中
    1. [1]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    10. [10]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    13. [13]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

Metrics
  • PDF Downloads(0)
  • Abstract views(439)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return