Citation:
JING Xu-liang, WANG Zhi-qing, FANG Yi-tian. Steam re-gasification properties and kinetics of coal char fines derived from fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(4): 400-406.
-
The steam gasification behavior and kinetics of coal char fines derived from fluidized bed gasifier were investigated by TGS-2 thermogravimetric analyzer. Their physical and chemical properties were also compared with the corresponding coal chars and demineralized char fines. The results show that the gasification reactivity of char fines increase with increasing temperature. Compared with the coal char from pyrolysis, the char fine has a larger surface area and leads to a higher gasification reactivity. The reactivity of different coal char fines are also affected by their carbon crystalline structure and ash content. Based on this, the gasification reactions are described by the shrinking core model and the kinetic parameters are obtained, so as to provide some theoretical guides for the gasification of coal char fines.
-
-
-
[1]
[1] 屈利娟. 流化床煤气化技术的研究进展[J]. 煤炭转化, 2007, 30(2): 81-85. (QU Li-juan. Process of research in the fluidized bed coal gasification technology[J]. Coal Conversion, 2007, 30(2): 81-85.)
-
[2]
[2] 许世森, 张东亮, 任永强. 大规模煤气化技术[M]. 北京: 化学工业出版社, 2006. (XU Shi-seng, ZHANG Dong-liang, REN Yong-qiang. Large-scale coal gasification technology[M]. Beijing: Chemical Industry Press, 2006.)
-
[3]
[3] KELEBOPILE L, SUN R, LIAO J. Fly ash and coal char reactivity from thermo-gravimetric (TGA) experiments[J]. Fuel Process Technol, 2011, 92(6): 1178-1186.
-
[4]
[4] GU J, WU S, WU Y, LI Y, GAO J . Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char[J]. Energy Fuels, 2008, 22(6): 4029-4033.
-
[5]
[5] 房倚天, 吴晋沪, 张建民, 王洋. 流化床气化炉飞灰气化反应性的研究:Ⅱ飞灰气化动力学的研究[J]. 燃料化学学报, 1996, 24(3): 225-232. (FANG Yi-tian, WU Jin-hu, ZHANG Jian-min, WANG Yang. Study on gasification reactivity of fly ash from a fluidized bed gasifier :Ⅱ study on gasification reaction kinetics of fly ash[J]. Journal of Fuel Chemistry and Technology, 1996, 24(3): 225-232.)
-
[6]
[6] 刘武标, 刘德昌, 米铁, 陈汉平, 张世红. 流化床水煤气炉飞灰反应性的实验研究[J]. 中国电机工程学报, 2003, 23(9): 189-192. (LIU Wu-biao, LIU De-chang, MI Tie, CHEN Han-pin, ZHANG Shi-hong. Experimental research on reactivity of fly ash from a fluidized bed water-gas gasifier[J]. Proceedings of the CSEE, 2003, 23(9): 189-192.)
-
[7]
[7] ZHANG L, HUANG J, FANG Y, WANG Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with stream and CO2[J]. Energy Fuels, 2006, 20(3): 1201-1210.
-
[8]
[8] TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under stream gasification[J]. Fuel, 1985, 64(10): 1438-1442.
-
[9]
[9] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋勝, 板谷義紀. 高灰熔点煤高温下煤焦CO2/水蒸气气化反应特性的实验研究[J]. 中国电机工程学报, 2007, 27(32): 24-27. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI N, MORI S, ITATYA Y. Experimental study on gasification reaction characteristics of Chinese high ash fusion temperature coal with CO2 and steam at elevated temperature[J]. Proceeding of the CSEE, 2007, 27(32): 24-27.)
-
[10]
[10] 任海军, 张永奇, 房倚天, 黄戒介, 王洋. 褐煤焦中的矿物质对气化动力学的影响[J]. 化学工程, 2010, 38(10): 132-135. (REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, HUANG Jie-jie, WANG-Yang. Effect of minerals in lignite char on kinetics of stream gasification [J]. Chemical Engineering (China), 2010, 38(10): 132-135)
-
[11]
[11] OCHOA J, CASSANELLO M C, BONELLI P R, CUKIERMAN A L. CO2 gasification of Argentinean coal chars: A kinetic characterization[J]. Fuel Process Technol, 2001, 74(3): 161-176.
-
[12]
[12] 许慎奇, 周志杰, 杨帆, 于广锁, 于遵宏. 快速热解温度下的淮南煤焦与水蒸气气化反应的研究[J]. 高校化学工程学报, 2008, 22(6): 947-953. (XU Shen-qi, ZHOU Zhi-jie, YANG Fan, YU Guang-suo, YU Zun-hong. Effects of pyrolysis temperature on stream gasification of Huainan char[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 947-953.)
-
[13]
[13] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国刚. 气化活性与孔比表面积的关系[J]. 煤炭转化, 2003, 26(3): 45-48. (LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Relationship of gasification activity and pore structure[J]. Coal Conversion, 2003, 26(3): 45-48.)
-
[14]
[14] ZHUO Y, MESSENBÖCK R, COLLOT A G, MEGARITIS A, PATERSON N, DUGWELL D R, KANDIYOTI R. Conversion of coal particles in pyrolysis and gasification: Comparison of conversions in a pilot-scale gasifier and bench-scale test equipment[J]. Fuel, 2000, 79(7): 793-802.
-
[1]
-
-
-
[1]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[2]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[3]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[4]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[7]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[10]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[12]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[18]
Yuting Bai , Cenqi Yan , Zhen Li , Jiaqiang Qin , Pei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010
-
[19]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[20]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(613)
- HTML views(27)