Citation:
XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(4): 391-399.
-
The macromolecular structure model of Chengzhuang coal was constructed based on the results of proximate and ultimate analysis, 13C-NMR spectrum and XPS spectrum. In the model the numbers of rings in polycyclic aromatic hydrocarbon were distributed between 1 and 5. The aliphatic C atoms existed in the forms of -CH3,-CH2- and cycloalkanes. 9 atoms of O were in the form of C=O, while one in the form of -OH and another one in the form of -O-. 2 atoms of N were in pyrrole, while S atom did not appear in the model because its concentration was lower than 1%. Molecular mechanics (MM) and molecular dynamics (MD) was adopted to simulate the energy-minimum conformation of the model and the results showed that the aromatic layers tended to be parallel by intramolecular or intermolecular π-π interaction and the latter should be one of the main contributors for the short-range ordering of high-rank coal structure. The van der waals energy and hydrogen bond energy contributed to the energy-minimum conformation.
-
-
-
[1]
[1] 秦勇. 中国煤层气地质研究进展与述评[J]. 高校地质学报, 2003, 9(3): 339-358. (QIN Yong. Advances and reviews on research of coalbed gas geology in China[J]. Geological of China University, 2003, 9(3): 339-358.)
-
[2]
[2] WHITE C M, SMITH D H, JONES K L, GOODMAN A L, JIKICH S A, LACOUNT R B, DUBOSE S B, OZDEMIR E, MORSI B I, SCHROEDER K T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review[J]. Energy Fuels, 2005, 19(3): 659-724.
-
[3]
[3] QIN Yong. Mechanism of CO2 enhanced CBM recovery in China: A review[J]. J China Univ Min Technol, 2008, 18(3): 406-412.
-
[4]
[4] MATHEWS J P, VAN DUIN A T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.
-
[5]
[5] MAZUMDAR B K, CHAKRABARTTY S K, LAHIRI A. Some aspects of the constitution of coal[J]. Fuel, 1962, 41(2): 129-139.
-
[6]
[6] MILLWARD G R, PITT G J. Coal and modern coal processing: an introduction[M], New York: Academic Press, 1979: 27-50.
-
[7]
[7] 仝晓波. 中石油向综合性能源公司挺进. 中国能源报, 2009-11-23(17). (TONG Xiao-bo. China National Petroleum is changing to a comprehensive energy company. China Energy News, 2009-11-23(17).)
-
[8]
[8] 彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13-CNMR research on the Kerogens of Jurassic hydrocabon source rock in the northen edge,Qaidam basin[J]. Acta Petrolei Sinica,2002, 23(2): 34-37.)
-
[9]
[9] 郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Yun-hui, DAI Zhang-shu. Using NMR to research the influence of low temperature pyrdysis on the chemical component and struture of low rank coal[J]. Coal Conversion, 1997, 20(4): 54-59.)
-
[10]
[10] TREWHELLA M J, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
-
[11]
[11] 徐秀峰, 张蓬洲. 高分辨固体 13C-NMR和XPS技术表征碳的骨架结构[J]. 煤炭转化, 1995, 18(4): 57-62. (XU Xiu-feng, ZHANG Peng-zhou. The study of carbon structure by solid-13C-NMR and XPS[J]. Coal Conversion, 1995, 18(4): 57-62.)
-
[12]
[12] 王丽, 张蓬洲, 郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J]. 燃料化学学报, 1996, 24(6): 539-543. (WANG Li, ZHANG Peng-zhou, ZHENG Min. Study on structural characterization of three Chinese coals of high organic sulphur content using XPS and solid—state NMR spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1996, 24(6): 539-543.)
-
[13]
[13] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83(3): 259-265.
-
[14]
[14] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals coals with different sulphur content[J]. Fuel Process Technol, 2002, 77: 1-7
-
[15]
[15] GARDNER S D, SINGAMSETTY C S K, BOOTH G L, HE Guo-ren. Surface characterization of carbon fibers using angle-resolved XPS and ISS[J]. Carbon, 1995, 33(5): 587-595.
-
[16]
[16] 徐秀峰, 张蓬洲. 用XPS表征氧、氮、硫元素的存在形态[J]. 煤炭转化, 1996, 19(1): 73-77. (XU Xiu-feng, ZHANG Peng-zhou. The XPS study of forms of oxygen, nitrogen and sulphur elements in gas coal[J]. Coal Conversion, 1996, 19(1): 73-77.)
-
[17]
[17] 罗陨飞, 李文华. 中低变质程度煤显微组分大分子结构的XRD研究[J]. 煤炭学报, 2004, 29(3): 339-341. (LUO Yun-fei, LI Wen-hua. X-ray diffraction analysis on the different macerals of several low-to-medium metamorpic grade coals[J]. Journal of China Coal Society, 2004, 29(3): 339-341.)
-
[18]
[18] 常海州, 蔡雪梅, 李改仙, 白官, 吕秀清. 不同还原程度煤显微组分堆垛结构表征[J]. 山西大学学报(自然科学版), 2008, 31(2): 223-227. (CHANG Hai-zhou, CAI Xue-mei, LI Gai-xian, BAI Guan, LV Xiu-qing. Characterization for the stacking structure of coal macerals with different type reductivity[J]. Journal of Shanxi University(Nat.Sci.Ed.), 2008, 31(2): 223-227.)
-
[19]
[19] 姜波, 秦勇, 宋党育, 王超. 高煤级构造煤的XRD结构及其构造地质意义[J].中国矿业大学学报,1998, 27(2): 115-118. (JIANG Bo, QIN Yong, SONG Dang-yu, WANG Chao. XRD structure of high rank tectonic coals and its implication to structural geology[J]. Journal of China University of mining & Technology, 1998, 27(2): 115-118.)
-
[20]
[20] 李小明, 曹代勇, 张守仁, 邢秀云. 不同变质类型煤的XRD结构演化特征[J]. 煤田地质与勘探, 2003, 31(6): 5-7. (LI Xiao-ming, CAO Dai-yong, ZHANG Shou-ren, XING xiu-yun. Study of the XRD parameter evolution of coal of different metamorphism types[J]. Coal Geology & Exploration, 2003, 31(6): 5-7.)
-
[21]
[21] BUDINOVA T, PEYROV N, MINKOVA V. Computer programmers for radial distribution analyses of X-rays[J]. Fuel, 1998, 77(6): 577-581.
-
[22]
[22] SENNECA O, SALATINO P, MASI S. Combustion rates of chars from high-volatile fuels for FBC Application[J]. Fuel, 1998, 77(12): 1483-1489.
-
[23]
[23] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 69,88. (XIE Ke-chang. Coal structure and its reactivity [M]. Beijing: Science Press, 2002: 69,88.)
-
[24]
[24] 虞继顺. 煤化学[M]. 北京: 冶金工业出版社, 2003: 168. (YU Ji-shun. Coal chemistry[M]. Beijing: Metallurgical Industry Press, 2003: 168.)
-
[25]
[25] 周强.中国煤中硫氮的赋存状态研究[J]. 洁净煤技术, 2008, 14(1): 73-77. (ZHOU Qiang. Study on occurrence mode of sulfur and nitrogen in coal in China[J]. Clean Coal Technology, 2008, 14(1): 73-77.)
-
[26]
[26] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for Upper Freeport coal using 13C-NMR chemical shift calculations [J]. Energy Fuels, 2002, 16(2): 379-387.
-
[27]
[27] 贾建波. 神东煤镜质组结构模型的构建及其热解甲烷生成机理的分子模拟. 太原: 太原理工大学, 2010. (JIA Jian-bo. Construction of structural model and molecular simulation of methane formation mechanism during coal pyrolysis for Shendong vitrinite. Taiyuan: Taiyuan University of Technology, 2010)
-
[28]
[28] NOS S A. Unified formulation of the constant temperature molecular dynamics methods[J]. J Chem Phys, 1984, 81(1): 511-519.
-
[29]
[29] TAKANOHASHI T, IINO M, NAKAMURA K. Simulation of interaction of coal associates with solvents using the molecular dynamics calculation[J]. Energy Fuels, 1998, 12(6): 1168-1173.
-
[30]
[30] QUINGA E Y, LARSEN J W. Noncovalent interactions in high-rank coals[J]. Energy Fuels, 1987, 1(3): 300-304.
-
[31]
[31] CARLSON G. A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.
-
[32]
[32] MARZEC A. Intermolecular interactions of aromatic hydrocarbons in carbonaceous materials a molecular and quantum mechanics [J]. Carbon, 2000, 38(3): 1863-1871.
-
[33]
[33] 曾凡桂, 张通, 王三跃, 谢克昌. 煤超分子结构的概念及其研究途径与方法[J]. 煤炭学报, 2004, 29(4): 443-447. (ZENG Fan-gui, ZHANG Tong, WANG San-yue, XIE Ke-chang. Concept of supramolecular structure of coal and its research approach, methodology[J]. Journal of China Coal Society, 2004, 29(4): 443-447.)
-
[34]
[34] LI Z, WARD C R, GURBA L W. Occurrence of non-mineral inorganic elements in macerals of low-rank coals[J]. Int J Coal Geol, 2010, 81(4): 242-250.
-
[35]
[35] 马延平. 柳林3#煤的超分子构建及分子模拟. 太原: 太原理工大学, 2012. (MA Yan-ping. The construction of Liulin 3#coal super molecular and molecular simulation. Taiyuan: Taiyuan University of Technology, 2012.)
-
[36]
[36] 彭志龙. 金属离子在煤结构中赋存形态的分子模拟. 太原: 太原理工大学, 2012. (PENG Zhi-long. The molecular simulation of the combined forms of metal ions in coal structure. Taiyuan: Taiyuan University of Technology, 2012.)
-
[1]
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[4]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[5]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[8]
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[11]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[16]
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[20]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1176)
- HTML views(202)