Citation: GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption models for methane adsorption equilibrium on activated carbon[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 380-384. shu

Comparisons of adsorption models for methane adsorption equilibrium on activated carbon

  • Corresponding author: ZHENG Qing-rong, 
  • Received Date: 30 August 2012
    Available Online: 21 November 2012

    Fund Project: 福建省自然科学基金(2011J01324) (2011J01324)福建省高等学校新世纪优秀人才计划支持计划(Z80136) (Z80136)福建省属高校专项课题(JK2010030)。 (JK2010030)

  • Comparisons of accuracies of adsorption models in predicting adsorption data of supercritical methane on activated carbon were carried out for practical application of adsorption of natural gas (ANG). Ajax activated carbon was selected as an adsorbent, six isotherms of excess adsorption amount of methane were measured at temperature from 268.15 K to 338.15 K and pressure up to 12.5 MPa. Parameters of Langmuir, Langmuir-Freundlich and Toth equations were firstly set by the linear fit of adsorption data, absolute amounts and densities of the adsorbed phase of supercritical methane were then determined by the modified models. Isosteric heats of methane adsorption on Ajax activated carbon were determined by adsorption isosteres on the absolute amounts. Comparisons were made between experimental data and those predicted by models. Results showed that the adsorbed phase densities of supercritical methane on the activated carbon varied with equilibrium temperatures and pressures, the mean value of isosteric heat of adsorption set by absolute amounts was 15.72 kJ/mol, which was smaller than that plotted from the excess amounts. The relative errors between the experimental data and those predicted by Langmuir, Langmuir-Freundlich and Toth equations varied with the pressure, The accumulated relative errors were respectively 6.449 8%, 7.918 4% and 0.910 0% at lower pressure range from 0 to 0.025 MPa, but will respectively be 0.491 1%, 0.161 3% and 0.369 4% while pressure was in range of 1~10 MPa. Toth equation performed well in predicting the equilibrium data in the whole pressure range, but the results from Langmuir-Freundlich equation had higher prediction accuracies while the pressure got higher.
  • 加载中
    1. [1]

      [1] 周理, 李明, 周亚平. 超临界甲烷在高比表面活性炭上的吸附测量及理论分析[J]. 中国科学(B辑), 2000, 30(1): 49-56. (ZHOU Li, LI Ming, ZHOU Ya-ping. Measurement and theoretical analysis of supercritical methane high specific surface area activated carbon adsorption[J]. Science in China (Series B), 2000, 30(1): 49-56.)

    2. [2]

      [2] BIRKETT G, DO D D. New method to determine PSD using supercritical adsorption: Applied to methane adsorption in activated carbon[J]. Langmuir, 2006, 22(18): 7622-7630.

    3. [3]

      [3] 郑青榕, 廖海峰, 解晨, 智会杰. 超临界甲烷在活性炭上的吸附平衡分析[J]. 燃料化学学报, 2012, 40(7): 892-896. (ZHENG Qing-rong, LIAO Hai-feng, JIE Chen, ZHI Hui-jie. Adsorption equilibrium of supercritical methane on activated carbon[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 892-896.)

    4. [4]

      [4] 孙艳. 多孔介质储气研究. 天津: 天津大学, 2007. (SUN Yan. Studies on gas storage in porous media. Tianjin: Tianjin University, 2007.)

    5. [5]

      [5] DO D D, DO H D. Appropriate volumes for adsorption isotherm studies: The absolute void volume, accessible pore volume and enclosing particle volume[J]. Journal of Colloid and Interface Science, 2007, 316(2): 317-330.

    6. [6]

      [6] OZAWA S, KUSUMI S, OGINO Y. Physical adsorption of gases at high pressure[J]. Journal of Colloid and Interface Science, 1976, 56(1): 83-91.

    7. [7]

      [7] LI M, GU A Z, LU X S, WANG R S. Determination of the adsorbate density from supercritical gas adsorption equilibrium data[J]. Carbon, 2003, 41(3): 585-588.

    8. [8]

      [8] PAGGIARO R, MICHL F, BE'NARD P. Cryo-adsorptive hydrogen storage on activated carbon. II: Investigation of the thermal effects during filling at cryogenic temperatures[J]. International Journal of Hydrogen Energy, 2010, 35(2): 648-659.

    9. [9]

      [9] DO D D, DO H D. Adsorption of supercritical fluids in non-porous and porous carbons: Analysis of adsorbed phase volume and density[J]. Carbon, 2003, 41(9): 1777-1791.

    10. [10]

      [10] 谢兰英, Lingai Luo, 李忠华. VOCs在MAC上吸附等温线的测定与拟合[J]. 化工学报, 2006, 57(6):1357-1362. (XIE Lan-ying, LUO Lingai, LI Zhong-hua. Measurement and simulation of adsorption isotherms of VOCs on MAC[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6): 1357-1362.)

    11. [11]

      [10] SETZMANN U, WAGNER W J. A new EOS and tables of thermodynamic properties for methane covering the range from the melting line to 635K at pressures up to 1000MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(6): 1061-1156.

    12. [12]

      [12] 郑青榕, BIRKETTG, DO D D. 甲烷在活性炭上吸附的实验及理论分析[J]. 天然气化工,2009, 34(1):41-45. (ZHENG Qing-rong, BIRKETT G, DO D D. Theoretical and experimental analysis of methane adsorption on activated carbon[J]. Natural Gas Chemical Industry, 2009, 34(1): 41- 44.)

    13. [13]

      [13] 李明, 顾安忠, 鲁雪生, 汪荣顺. 吸附势理论在甲烷临界温度以上吸附中的作用[J]. 天然气化工, 2003, 28(5): 28-31. (LI Ming, GU An-zhong, LU Xue-sheng, WANG Rong-shun. Study on methane adsorption above critical temperature by adsorption potential theory[J]. Natural Gas Chemical Industry, 2003, 28(5): 28-31.

    14. [14]

      [14] 李明. 甲烷在AX-21活性炭上吸附特性的研究. 天津: 天津大学化工学院, 1998. (Li Ming. Study of adsorption characteristics of methane on the AX-21 activated carbon. Tianjin: Tianjin University, 1998.)

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    15. [15]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    16. [16]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    20. [20]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

Metrics
  • PDF Downloads(0)
  • Abstract views(838)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return