Citation: YOU Hong-xin, GAO Hong-jie, CHEN Gang, DING Xin-wei. Effects of dry methane concentration on the methane reactions at Ni-YSZ anode in solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 374-379. shu

Effects of dry methane concentration on the methane reactions at Ni-YSZ anode in solid oxide fuel cell

  • Corresponding author: YOU Hong-xin, 
  • Received Date: 20 August 2012
    Available Online: 16 November 2012

  • The dry methane with different concentration was used to research the dry methane reactions at Ni-YSZ anode in solid oxide fuel cell (SOFC). The anode exhaust gases were measured by on-line chromatography. The reactions of dry methane with different concentration at SOFC Ni-YSZ anodes were analyzed by summarizing the anode exhaust gases regular pattern for different reactions. The mathematical relationships between dry methane concentration and current for different anode reaction were studied. As the oxygen ion concentration at the anode three-phase boundary increasing continuously, the following reactions with low concentration methane occurs in sequence of CH4+O2- → CO+2H2+2e-, CH4+2O2- → CO+H2O+H2+e-, CH4+3O2- → CO+2H2O+6e- and CH4+4O2- → CO2+2H2O+8e-. The first two or three reactions occurred with medium methane concentration, while the first reaction occurred only with high methane concentration. The judgment for methane in low, medium or high concentrations were qv(CH4)≤I/(4F)、I/(4F)≤qv(CH4)≤I/(2F)、qv(CH4)≥I/(2F) which are based on Faraday's first law and the relationship among the reactant species.
  • 加载中
    1. [1]

      [1] MICHAEL K B, MICHAEL V D B, STEVEN M. The influence of current density on the electro catalytic activity of oxide-based direct hydrocarbon SOFC anodes[J]. J Electrochem Soc, 2008, 155(11): 1202-1209.

    2. [2]

      [2] KDENDALL K, FINNERTY C M, SAUUNDERS G, CHUNG J T. Effect of dilution methane entering an SOFC anode[J]. J Power Sources, 2002, 106: 323-327.

    3. [3]

      [3] ABUDULA A, IHARA M, KOMIYAMA H, YAMADA K. Oxidation mechanism and effective anode thickness of SOFC for dry methane fuel[J]. Solid State Ionics, 1996, 86-88: 1203-1209.

    4. [4]

      [4] 由宏新, 高红杰, 陈刚, 阿布里提, 丁信伟. 低浓度干甲烷在SOFC Ni -YSZ阳极上的反应[J]. 燃料化学学报, 2011, 39(1): 69-74. (YOU Hong-xin, GAO Hong-jie, CHEN Gang, ABULIT·Abudula. DING Xin-wei. Reactions of low concentration dry methane at Ni-YSZ anode in the SOFCs[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 69-74.)

    5. [5]

      [5] YOU H, GAO H, CHEN G, ABULITI A, DING X. The conversion among reactions at Ni-based anodes in solid oxide fuel cells with low concentrations of dry methane[J]. J Power Sources, 2011, 196(5): 2779-2784.

    6. [6]

      [6] ZHAN Z, LIN Y, PILLAI M, KIM I, BARNETT S A. High-rate electrochemical partial oxidation of methane in solid oxide fuel cells[J]. J Power Sources, 2006, 161(1): 460-465.

    7. [7]

      [7] 由宏新, 丁信伟, 阿布里提·阿布都拉. SOFC中不同浓度干甲烷在Ni-YSZ阳极上的反应[J]. 化工学报, 2006, 57(3): 620-625. (YOU Hong-xin, DING Xin-wei, ABULITI Abudula. Reactions of low and middle concentration dry methane on Ni-YSZ anode of SOFC[J]. Journal of Chemical Industry And Engineering(China), 2006, 57(3): 620-625.)

    8. [8]

      [8] YOU H, ABULITI A, DING X, ZHOU Y. Reactions of low and middle concentration dry methane on Ni/YSZ anode of SOFC[J]. J Power Sources, 2007, 165(2): 722-727.

    9. [9]

      [9] ETHAN S H, GAURAV K G, ZHU H, DEAN A M, KEE R J, MAIER L, DEUTSCHMANN O. Methane reforming kinetics within a Ni-YSZ SOFC anode support[J]. Appl Catal A, 2005, 295(1): 40-51.

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    16. [16]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(677)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return