Citation:
XIONG Zhi-bo, LU Chun-mei. Study on the modification of iron-cerium mixed oxide catalyst for selective catalytic reduction of NO[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(3): 361-367.
-
A series of iron-cerium mixed oxide catalysts modified titanium, zirconium, tungsten and molybdenum were prepared by co-precipitation. The selective catalytic reduction of NOx with NH3(NH3-SCR) activity of the catalysts were carried out in a fixed-bed quartz tube reactor. The research results indicated that the addition of tungsten and molybdenum could increase the high-temperature NH3-SCR activity of the iron-cerium mixed oxide catalysts, but decreased its low-temperature NH3-SCR activity. Titanium could improve the NH3-SCR activity of the iron-cerium mixed oxide catalyst within the range of reaction temperature, especially at low-temperature. Titanium was the most suitable assistant. When increasing the molar fraction of titanium from 0.10 to 0.40, the low-temperature NH3-SCR activity of iron-cerium-titanium mixed oxide catalysts firstly increased and then decreased while the high-temperature activity gradually increased to 100%, and the optimum molar fraction of titanium was 0.15. The results of X-ray diffraction(XRD) and N2 adsorption isotherms showed that the addition of titanium could optimize the pore structure of iron-cerium mixed oxide catalyst, and increased the BET surface and the pore volume of the iron-cerium mixed oxide catalyst, meanwhile refined its pore size. At the some cases, titanium could react with iron oxide and cerium oxide within the iron-cerium mixed oxide catalyst to form the solid solution. Therefore, the addition of titanium could enhance the NH3-SCR activity of iron-cerium mixed oxide catalyst. Under the condition of the test, more than 90% of NOx conversion could be achieved over Fe0.8Ce0.05Ti0.15Oz catalyst at the temperature range of 150~400℃.
-
-
-
[1]
[1] 沈伯雄, 熊丽仙, 刘亭, 王静, 田晓娟. 纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J]. 燃料化学学报, 2010, 38(1): 85-90. (SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan.Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 85-90.)
-
[2]
[2] 沈伯雄, 马娟. SiO2改性的V2O5-WO3/TiO2催化剂抗碱中毒性能研究[J]. 燃料化学学报, 2012, 40(2): 247-251. (SHEN Bo-xiong, MA Juan.Alkali-resistant performance of V2O5-WO3/TiO2 catalyst modified by SiO2[J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 247-251.)
-
[3]
[3] LONG R Q, YANG R T. The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. Appl Catal. B, 2000, 27(2): 87-95.
-
[4]
[4] LIU F, HE H, YUN D,ZHANG C. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B, 2009, 93(1/2):194-204.
-
[5]
[5] VERDIER S, ROHART E, BRADSHAW H, HARRIS D, BICHON P H, DELAHAY G. Aicidic zirconia material for durable NH3-SCR deNOx catalysts[J]. SAE Technical Paper, 2008-01-1022.
-
[6]
[6] 徐海迪, 邱春天, 张秋林, 林涛, 龚茂初, 陈耀强. WO3对MnOx-CeO2/ZrO2-TiO2整体式催化剂NH3选择性催化还原NOx性能的影响[J]. 物理化学学报, 2010, 26(9): 2449-2454. (XU Hai-di, QIU Chun-tian, GONG Mao-chu, ZHANG Qiu-lin, LIN Tao, CHEN Yao-qiang. Influence of tungsten oxide on selective catalytic reduction of NOx with NH3 over MnO<em>x-CeO2/ZrO2-TiO2 monolith catalyst[J]. Acta Phys-Chim Sin, 2010, 26(9): 2449-2454.)
-
[7]
[7] ZHANG R, TEOH W Y, AMAL R, CHEN B, KALIAGUINE S.Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis[J]. J. Catal, 2010, 272(2): 210-219.
-
[8]
[8] SHI A, WANG X, YU T, SHEN M.The effect of zirconia additive on the activity and structure stability of V2O5/WO3-TiO2 ammonia SCR catalysts[J]. Appl Catal B, 2011, 106(3/4): 359-369.
-
[9]
[9] 朱崇兵, 金保升, 李峰, 仲兆平, 翟俊霞, 陈玲霞.蜂窝状V2O5-WO3/TiO2催化剂脱硝性能研究[J]. 中国电机工程学报, 2007, 27(29): 45-50. (ZHU Chong-bing, JIN Bao-sheng, LI Feng, ZHONG Zhao-ping, CHEN Jun-xia, CHEN Ling-xia. Study on De-NOx performance of honeycomb V2O5-WO3/TiO2 catalysts[J].Proceedings of the CSEE, 2007, 27(29): 45-50.)
-
[10]
[10] KOMPIO P G W A, BRÜCKNER A, HIPLER F, AUER G, LFFLER E. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3[J]. J. Catal, 2012, 286: 237-247.
-
[11]
[11] CHEN L, LI J, GE M, MA L, CHANG H. Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J].Chin J. Catal, 2011, 32(5): 836-841.
-
[12]
[12] GAO X, JIANG Y, ZHONG Y, LUO Z, CEN K.The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater, 2010, 174(1/3): 734-739.
-
[13]
[13] LIU F, HE H, ZHANG C, FENG Z, ZHENG L, XIE Y, HU T. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization[J]. Appl Catal B, 2010, 96(3/4): 408-420.
-
[14]
[14] LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010, 114(40): 16929-16936.
-
[1]
-
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[2]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[3]
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
-
[4]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[5]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[6]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[9]
Jianning Zhang , Yihuai Zhang , Guoxin Ma , Jingchen Zhao , Tao Zhang , Jian Liu . Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure. Chinese Chemical Letters, 2025, 36(7): 110516-. doi: 10.1016/j.cclet.2024.110516
-
[10]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[11]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[12]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[13]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[14]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[15]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[16]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[17]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[18]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[19]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[20]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(562)
- HTML views(89)