Citation: WEI Qiang, XU Yan, ZHANG Xiao-qing, ZHAO Chuan-chuan, DAI Xiao-yan, YIN Yong-xiang. CH4-CO2 reforming by combination of plasma and catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 328-334. shu

CH4-CO2 reforming by combination of plasma and catalysts

  • Corresponding author: YIN Yong-xiang, 
  • Received Date: 13 August 2012
    Available Online: 21 November 2012

  • To reduce the energy consumption of CO2 reforming of CH4, the synergies of thermal plasma and catalysts in the reforming process was studied in three elaborate modes: plasma only, combination of plasma and catalysts (CPC), and CPC with part of feed gases introduced into plasma discharge region. The optimal specific energy of 193 kJ/mol and energy conversion efficiency of 66.4% were achieved under the conditions of CH4/CO2 of 4/6, input power at 14.4 kW, feed gases of 5 m3/h in mode 3, when the conversions of CH4 and CO2 were 77.00% and 62.40%, and the selectivities of H2 and CO were 88.60% and 96.70%, respectively. These results were closed to that of CH4-H2O(g) reforming process. The excellent performance of the present process benefits from three different reaction courses: discharge reaction, thermochemical reaction and catalytic reaction.
  • 加载中
    1. [1]

      [1] WENDER I. Reactions of synthesis gas[J]. Fuel Process Technol, 1996, 48(3): 189-297.

    2. [2]

      [2] ROSTRUP-NIELSEN J R. New aspects of syngas production and use[J]. Catal Today, 2000, 63(2/4): 159-164.

    3. [3]

      [3] ASHCROFT A T, CHEETHAM A K, GREEN M L H, VERNON P D F. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature, 1991, 352(6332): 225-226.

    4. [4]

      [4] WILHELM D J, SIMBECK D R, KARP A D, DICKENSON R L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook[J]. Fuel Process Technol, 2001, 71(1/3): 139-148.

    5. [5]

      [5] TAO X, BAI M, LI X, LONG H, SHANG S, YIN Y, DAI X. CH4-CO2 reforming by plasma-challenges and opportunities[J]. Prog Energy Combust Sci, 2011, 37(2): 113-124.

    6. [6]

      [6] LI M-W, LIU C-P, TIAN Y-L, XU G-H, ZHANG F-C, WANG Y-Q. Effects of catalysts in carbon dioxide reforming of methane via corona plasma reactions[J]. Energy Fuels, 2006, 20(3): 1033-1038.

    7. [7]

      [7] LI M-W, TIAN Y-L, XU G-H. Characteristics of carbon dioxide reforming of methane via alternating current (AC) corona plasma reactions[J]. Energy Fuels, 2007, 21(4): 2335-2339.

    8. [8]

      [8] GOUJARD V, TATIBOUET J-M, BATIOT-DUPEYRAT C. Use of a non-thermal plasma for the production of synthesis gas from biogas[J]. Appl Catal A, 2009, 353(2): 228-235.

    9. [9]

      [9] WANG Q, YAN B-H, JIN Y, CHENG Y. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: Interaction of catalyst and plasma[J]. Energy Fuels, 2009, 23(8): 4196-4201.

    10. [10]

      [10] BO Z, YAN J, LI X, CHI Y, CEN K. Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion[J]. Int J Hydrogen Energy, 2008, 33(20): 5545-5553.

    11. [11]

      [11] RUEANGJITT N, AKARAWITOO C, CHAVADEJ S. Production of hydrogen-rich syngas from biogas reforming with partial oxidation using a multi-stage AC gliding arc system[J]. Plasma Chem Plasma Process, 2012, 32(3): 583-596.

    12. [12]

      [12] 张军旗, 杨永进, 张劲松, 刘强. 常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究[J].化学学报, 2002, 60(11): 1973-1980. (ZHANG Jun-qi, YANG Yong-jin, ZHANG Jin-song, LIU Qiang. Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure[J]. Acta Chimica Sinica, 2002, 60(11): 1973-1980.)

    13. [13]

      [13] FIDALGO B, DOMINGUEZ A, PIS J J, MENENDEZ J A. Microwave-assisted dry reforming of methane[J]. Int J Hydrogen Energy, 2008, 33(16): 4337-4344.

    14. [14]

      [14] GHORBANZADEH A M, MODARRESI H. Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: The effect of pulse compression[J]. J Appl Phys, 2007, 101(12):123303-123312.

    15. [15]

      [15] LONG H, SHANG S, TAO X, YIN Y, DAI X. CO2 reforming of CH4 by combination of cold plasma jet and Ni/gamma-Al2O3 catalyst[J]. Int J Hydrogen Energy, 2008, 33(20): 5510-5515.

    16. [16]

      [16] GHORBANZADEH A M, LOTFALIPOUR R, REZAEI S. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma[J]. Int J Hydrogen Energy, 2009, 34(1): 293-298.

    17. [17]

      [17] LI D, LI X, BAI M, TAO X, SHANG S, DAI X, YIN Y. CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: A high conversion ability[J]. Int J Hydrogen Energy, 2009, 34(1): 308-313.

    18. [18]

      [18] LI X-S, ZHU B, SHI C, XU Y, ZHU A-M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure[J]. AIChE J, 2011, 57(10): 2854-2860.

    19. [19]

      [19] ZHU B, LI X-S, SHI C, LIU J-L, ZHAO T-L, ZHU A-M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma[J]. Int J Hydrogen Energy, 2012, 37(6): 4945-4954.

    20. [20]

      [20] TAO X, QI F, YIN Y, DAI X. CO2 reforming of CH4 by combination of thermal plasma and catalyst[J]. Int J Hydrogen Energy, 2008, 33(4): 1262-1265.

    21. [21]

      [21] TAO X, BAI M, WU Q, HUANG Z, YIN Y, DAI X. CO2 reforming of CH4 by binode thermal plasma[J]. Int J Hydrogen Energy, 2009, 34(23): 9373-9378.

    22. [22]

      [22] NI G, LAN Y, CHENG C, MENG Y, WANG X. Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure[J]. Int J Hydrogen Energy, 2011, 36(20): 12869-12876.

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return