Citation: WEI Qiang, XU Yan, ZHANG Xiao-qing, ZHAO Chuan-chuan, DAI Xiao-yan, YIN Yong-xiang. CH4-CO2 reforming by combination of plasma and catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 328-334. shu

CH4-CO2 reforming by combination of plasma and catalysts

  • Corresponding author: YIN Yong-xiang, 
  • Received Date: 13 August 2012
    Available Online: 21 November 2012

  • To reduce the energy consumption of CO2 reforming of CH4, the synergies of thermal plasma and catalysts in the reforming process was studied in three elaborate modes: plasma only, combination of plasma and catalysts (CPC), and CPC with part of feed gases introduced into plasma discharge region. The optimal specific energy of 193 kJ/mol and energy conversion efficiency of 66.4% were achieved under the conditions of CH4/CO2 of 4/6, input power at 14.4 kW, feed gases of 5 m3/h in mode 3, when the conversions of CH4 and CO2 were 77.00% and 62.40%, and the selectivities of H2 and CO were 88.60% and 96.70%, respectively. These results were closed to that of CH4-H2O(g) reforming process. The excellent performance of the present process benefits from three different reaction courses: discharge reaction, thermochemical reaction and catalytic reaction.
  • 加载中
    1. [1]

      [1] WENDER I. Reactions of synthesis gas[J]. Fuel Process Technol, 1996, 48(3): 189-297.

    2. [2]

      [2] ROSTRUP-NIELSEN J R. New aspects of syngas production and use[J]. Catal Today, 2000, 63(2/4): 159-164.

    3. [3]

      [3] ASHCROFT A T, CHEETHAM A K, GREEN M L H, VERNON P D F. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature, 1991, 352(6332): 225-226.

    4. [4]

      [4] WILHELM D J, SIMBECK D R, KARP A D, DICKENSON R L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook[J]. Fuel Process Technol, 2001, 71(1/3): 139-148.

    5. [5]

      [5] TAO X, BAI M, LI X, LONG H, SHANG S, YIN Y, DAI X. CH4-CO2 reforming by plasma-challenges and opportunities[J]. Prog Energy Combust Sci, 2011, 37(2): 113-124.

    6. [6]

      [6] LI M-W, LIU C-P, TIAN Y-L, XU G-H, ZHANG F-C, WANG Y-Q. Effects of catalysts in carbon dioxide reforming of methane via corona plasma reactions[J]. Energy Fuels, 2006, 20(3): 1033-1038.

    7. [7]

      [7] LI M-W, TIAN Y-L, XU G-H. Characteristics of carbon dioxide reforming of methane via alternating current (AC) corona plasma reactions[J]. Energy Fuels, 2007, 21(4): 2335-2339.

    8. [8]

      [8] GOUJARD V, TATIBOUET J-M, BATIOT-DUPEYRAT C. Use of a non-thermal plasma for the production of synthesis gas from biogas[J]. Appl Catal A, 2009, 353(2): 228-235.

    9. [9]

      [9] WANG Q, YAN B-H, JIN Y, CHENG Y. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: Interaction of catalyst and plasma[J]. Energy Fuels, 2009, 23(8): 4196-4201.

    10. [10]

      [10] BO Z, YAN J, LI X, CHI Y, CEN K. Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion[J]. Int J Hydrogen Energy, 2008, 33(20): 5545-5553.

    11. [11]

      [11] RUEANGJITT N, AKARAWITOO C, CHAVADEJ S. Production of hydrogen-rich syngas from biogas reforming with partial oxidation using a multi-stage AC gliding arc system[J]. Plasma Chem Plasma Process, 2012, 32(3): 583-596.

    12. [12]

      [12] 张军旗, 杨永进, 张劲松, 刘强. 常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究[J].化学学报, 2002, 60(11): 1973-1980. (ZHANG Jun-qi, YANG Yong-jin, ZHANG Jin-song, LIU Qiang. Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure[J]. Acta Chimica Sinica, 2002, 60(11): 1973-1980.)

    13. [13]

      [13] FIDALGO B, DOMINGUEZ A, PIS J J, MENENDEZ J A. Microwave-assisted dry reforming of methane[J]. Int J Hydrogen Energy, 2008, 33(16): 4337-4344.

    14. [14]

      [14] GHORBANZADEH A M, MODARRESI H. Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: The effect of pulse compression[J]. J Appl Phys, 2007, 101(12):123303-123312.

    15. [15]

      [15] LONG H, SHANG S, TAO X, YIN Y, DAI X. CO2 reforming of CH4 by combination of cold plasma jet and Ni/gamma-Al2O3 catalyst[J]. Int J Hydrogen Energy, 2008, 33(20): 5510-5515.

    16. [16]

      [16] GHORBANZADEH A M, LOTFALIPOUR R, REZAEI S. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma[J]. Int J Hydrogen Energy, 2009, 34(1): 293-298.

    17. [17]

      [17] LI D, LI X, BAI M, TAO X, SHANG S, DAI X, YIN Y. CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: A high conversion ability[J]. Int J Hydrogen Energy, 2009, 34(1): 308-313.

    18. [18]

      [18] LI X-S, ZHU B, SHI C, XU Y, ZHU A-M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure[J]. AIChE J, 2011, 57(10): 2854-2860.

    19. [19]

      [19] ZHU B, LI X-S, SHI C, LIU J-L, ZHAO T-L, ZHU A-M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma[J]. Int J Hydrogen Energy, 2012, 37(6): 4945-4954.

    20. [20]

      [20] TAO X, QI F, YIN Y, DAI X. CO2 reforming of CH4 by combination of thermal plasma and catalyst[J]. Int J Hydrogen Energy, 2008, 33(4): 1262-1265.

    21. [21]

      [21] TAO X, BAI M, WU Q, HUANG Z, YIN Y, DAI X. CO2 reforming of CH4 by binode thermal plasma[J]. Int J Hydrogen Energy, 2009, 34(23): 9373-9378.

    22. [22]

      [22] NI G, LAN Y, CHENG C, MENG Y, WANG X. Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure[J]. Int J Hydrogen Energy, 2011, 36(20): 12869-12876.

  • 加载中
    1. [1]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(398)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return