Citation:
MAO Wan-yu, SUN Qi-wen, YING Wei-yong, FANG Ding-ye. Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(3): 314-322.
-
In-situ DRIFTS and chemical trapping techniques were employed to investigate the adsorbed species over the surface of precipitated iron-based catalysts and the mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis. The results showed that both linear and bridged CO molecules are present on the catalyst surface, which leads the formation of numerous oxygenated precursors. Some crucial surface intermediates are detected by the in-situ DRIFTS, such as acetate, acetyl and methoxide. The surface of precipitated iron-based catalysts is characterized by following facts: (ⅰ) alcohols are able to react with free surface hydroxyls to form alkoxy species; (ⅱ) surface adsorbed molecules exhibit certain oxidizing ability; (ⅲ) basic sites such as OH- and lattice oxygen may react with CH3OH or CH3CHO molecules. By chemical trapping of the CH3OH + CO and CH3I + CO + H2 reactions, it was found that acetyl is an important intermediate for oxygenates and the hydrogenation of acetyl is a crucial step for the formation of oxygenates. On the basis of these observations, the mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts was then proposed.
-
-
-
[1]
[1] ICHIKAWA M, FUKUSHIMA T. Mechanism of syngas conversion into C2-oxygenates such as ethanol catalysed on a SiO2-supported Rh-Ti catalyst[J]. J Chem Soc Chem Commun, 1985, (6): 321-323.
-
[2]
[2] PIJOLAT M, PERRICHON V. Synthesis of alcohols from CO and H2 on a Fe/A12O3 catalyst at 8-30 bars pressure[J]. Appl Catal, 1985, 13(2): 321-333.
-
[3]
[3] TAKEUCHI A, KATZER J R. Mechanism of methanol formation[J]. J Phys Chem, 1981, 85(8): 937-939.
-
[4]
[4] KIENNEMANN A, DIAGNE C, HINDERMANN J P, CHAUMETTE P, COURTY P H. Higher alcohols synthesis from CO+2H2 on cobalt-copper catalyst: Use of probe molecules and chemical trapping in the study of the reaction mechanism[J]. Appl Catal, 1989, 53(2/3): 197-216.
-
[5]
[5] ORITA H, NAITO S, TAMARU K. Mechanism of acetaldehye formation from the carbon monoxide-hydrogen reaction below atmospheric pressure over supported Rh catalysts[J]. J Chem Soc Chem Commun, 1984, (1): 150-151.
-
[6]
[6] 周朝辉, 高景星. 重氧水和合成气与卡宾簇合物的模型反应研究铑催化剂乙醇合成机理[J]. 分子催化, 1990, 4(3): 256-257. (ZHOU Chao-hui, GAO Jing-xing. Model reactions of supported carbene cluster with D2O or D218O and syngas for mechanism study of Rh-catalyzed ethanol synthesis[J]. Journal of Molecular Catalysis(China), 1990, 4(3): 256-257.)
-
[7]
[7] 孙启文, 蒋凡凯, 杨文书, 刘晓莉. 一种高温费托合成铁基催化剂及其制备方法: 中国, 1695803A. 2005-11-16. (SUN Qi-wen, JIANG Fan-kai, YANG Wen-shu, LIU Xiao-li. A high-temperature iron-based catalyst for Fischer-Tropsch synthesis and its preparation method: CN, 1695803A. 2005-11-16.)
-
[8]
[8] LAVALLEY J C, SAUSSEY J, LAMOTTE J. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. J Phys Chem, 1990, 94(15): 5941-5947.
-
[9]
[9] SHEPPARD N, NGUYEN T T. Advances in infrared and roman spectroscopy[M]. New York: Wiley-Interscience, 1978.
-
[10]
[10] ZHANG C-H, YANG Y, TENGA B-T, LI T-Z, ZHENG H-Y, XIANG H-W, LI Y-W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2): 405-415.
-
[11]
[11] CHAFIK T, DULAURENT O, GASS J T, BIANCHI D. Heat of adsorption of carbon monoxide on a Pt/Rh/CeO2/Al2O3three-way catalyst using in-situ infrared spectroscopy at high temperatures[J]. J Catal, 1998, 179(2): 503-514.
-
[12]
[12] SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: A diffuse reflectance FTIR study: Part I Identification of surface species and methanation reactions on palladium/zirconia catalysts[J]. J Mol Catal, 1990, 63(2): 223-242.
-
[13]
[13] WEIGEL J, KOEPPEL R A, BAIKER A, WOKAUN A. Surface species in CO and CO2 hydrogenation over copper/zirconia: On the methanol synthesis mechanism[J]. Langmuir, 1996, 12(22): 5319-5329.
-
[14]
[14] CLARKE D B, LEE D K, SANDOVAL M J, BELL A T. Infrared studies of the mechanism of methanol decomposition on Cu/SiO2[J]. J Catal, 1994, 150(1): 81-93.
-
[15]
[15] MA Z, YANG C, WEI W, LI W, SUN Y. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation [J]. J Mol Catal, 2005, 231(1/2): 75-81.
-
[16]
[16] DAVIS J L, BARTEAU M A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111)[J]. Surf Sci, 1990, 235(2/3): 235-248.
-
[17]
[17] SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: A diffuse reflectance FTIR study: Part II Surface species on copper/zirconia catalysts: Implications for methanol synthesis selectivity[J]. J Mol Catal, 1990, 63(2): 243-254.
-
[18]
[18] GREENLER R G. An infrared investigation of xanthate adsorption by lead sulfide[J]. J Chem Phys, 1962, 66(5): 879-883.
-
[19]
[19] SILVA A M, SOUZA K R, JACOBS G, GRAHAM U M, DAVIS B H, MATTOS L V, NORONHA F B. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst[J]. Appl Catal A, 2011, 102(1/2): 94-109.
-
[20]
[20] PETKOVIC L M, RASHKEEV S N, GINOSAR D M. Ethanol oxidation on metal oxide-supported platinum catalysts[J]. Catal Today, 2009, 147(2): 107-114.
-
[21]
[21] DOMOK M, TOTH M, RASKO J, ERDOHELYI A. Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts[J]. Appl Catal B, 2007, 69(3/4): 262-272.
-
[22]
[22] ZAMBONI V, ZERBI G. Vibrational spectrum of a new crystalline modification of polyoxymethylene[J]. J Polym Sci, 1964, 7(1): 153-161.
-
[23]
[23] EVANS J C, BERNSTEIN H J. The vibrational spectra of acetaldehyde and acetaldehyde-d1[J]. Can J Chem, 1956, 34(8): 1083-1092.
-
[24]
[24] DEMRI D, HINDERMANN J P, DIAGNE C, KIENNEMANN A. Formation of C2 oxygenates on rhodium-containing catalysts during CO + H2 reactions. FTIR study of acetaldehyde adsorption[J]. J Chem Soc Faraday Trans, 1994, 90(3): 501-506.
-
[25]
[25] HE Y, JI H. In-situ DRIFTS study on catalytic oxidation of formaldehyde over Pt/TiO2 under mild conditions[J]. Chin J Catal, 2010, 31(2): 171-175.
-
[26]
[26] EI-SAYED Y, BANDOSZ T J. A study of acetaldehyde adsorption on activated carbons[J]. J Coll Interf Sci, 2001, 242(1): 44-51.
-
[27]
[27] BUSCA G, LORENZELLI V. Infrared study of methanol, formaldehyde, and formic acid adsorbed on hematite[J]. J Catal, 1980, 66(1): 155-161.
-
[28]
[28] ANTON A B, PARMETER J E, WEINBERG W H. Adsorption of formaldehyde on the Ru(001) and Ru(001)-p(2.times. 2)O surfaces [J]. J Am Chem Soc, 1986, 108(8): 1823-1833.
-
[29]
[29] DEMRI D, CHATEAU L, HINDERMANN J P, KIENNEMANN A, BETTAHAR M M. C1-oxygenated molecules adsorbed on rhodium containing catalysts. Identification of a formyl species[J]. J Mol Catal, 1996, 104(3): 237-249.
-
[30]
[30] IDRISS H, HINDERMANN J P, KIEFFER R. Characterization of dioxymethylene species over Cu-Zn catalysts[J]. J Mol Catal, 1987, 42(2): 205-213.
-
[31]
[31] CHUDEK J A, MCQUIRE M W, MCQUIRE G W, ROCHESTER C H. In situ FTIR study of CO-H2 reactions over RH/TiO2 catalysts at high pressure and temperature[J]. J Chem Soc Faraday Trans, 1994, 90(24): 3699-3709.
-
[32]
[32] 应卫勇, 曹发海, 房鼎业. 碳一化工主要产品生产技术[M]. 北京: 化学工业出版社, 2004. (YING Wei-yong, CAO Fa-hai, FANG Ding-ye. Major products and technology in C1 chemical industry[M]. Beijing: Chemical Industry Press, 2004.)
-
[33]
[33] VEDAGE G A, HERMAN R G, KLIER K. Chemical trapping of surface intermediates in methanol synthesis by amines[J]. J Catal, 1985, 95(2): 423-434.
-
[34]
[34] LAVALLEY J C, SAUSSEY J, RAIS T. Infrared study of the interaction between CO and H2 on ZnO: Mechanism and sites of formation of formyl species[J]. J Mol Catal, 1982, 17(2/3): 289-298.
-
[35]
[35] SAUSSEY J, LAVALLEY J C, RAIS T, CHAKOR-ALAMI A, HINDERMANN J P, KIENNEMANN A. The formation of formyl species from CO + H2 on ZnO: Evidence and comparative study using IR spectroscopy and chemical trapping[J]. J Mol Catal, 1984, 26(1): 159-163.
-
[36]
[36] SARKAR A, KEOGH R A, BAO S, DAVIS B H. Fischer–Tropsch synthesis with promoted iron catalyst: Reaction pathways for acetic acid, glycol, 2-ethoxyethanol and 1,2-diethoxyethane[J]. Appl Catal A, 2008, 341(1/2): 146-153.
-
[37]
[37] PICHLER H, SCHULZ H. Neuere erkenntnisse auf dem gebiet der synthese von kohlenwasserstoffen aus CO und H2[J]. Chem Ing Tech, 1970, 42(18): 1162-1174.
-
[38]
[38] JOHNSTON O, JOYNER R W. Structure-function relationships in heterogeneous catalysis: The embedded surface molecule approach and its applications[M]. Stud Surf Sci Catal, 1993, 75: 165-180.
-
[39]
[39] FORSTER D. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes[J]. Adv Organomet Chem, 1979, 17: 255-267.
-
[40]
[40] ZHANG X, LIU Y, LIU G, TAO K, LIN Q, MENG F, WANG D, TSUBAKI N. Product distributions including hydrocarbon and oxygenates of Fischer-Tropsch synthesis over mesoporous MnO2-supported Fe catalyst[J]. Fuel, 2012, 92(1): 122-129.
-
[41]
[41] MARK A B, STEVEN S C, SCOTT A H. Dynamic and kinetic modeling of isotopic transient responses for CO insertion on Rh and Mn–Rh catalysts[J]. Catal Today, 1998, 44(1/4): 151-163.
-
[42]
[42] KIENNEMANN A, BREAULT R, HINDERMANN J P. Ethanol promotion by the addition of cerium to rhodium–silica catalysts[J]. J Chem Soc Faraday Trans, 1987, 83(7): 2119-2128.
-
[43]
[43] BREAULT R, HINDERMANN J P, KIENNEMANN A, LAURIN M. CO + H2 reactions on rhodium catalysts: Study of the Reactivity and mechanism[M]. Stud Surf Sci Catal, 1984, 19: 489-496.
-
[44]
[44] CHATEAU L, HINDERMANN J P, KIENNEMANN A, TEMPESTI E. On the mechanism of carbonylation in acetic acid and higher acid synthesis from methanol and syngas mixtures on supported rhodium catalysts[J]. J Mol Catal, 1996, 107(1/3): 367-378.
-
[1]
-
-
-
[1]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[4]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[5]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[6]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[7]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[8]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[9]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[10]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[11]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[12]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[13]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
-
[16]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[17]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[18]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[19]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[20]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(563)
- HTML views(84)