Citation: ZHAO Liang, ZHANG Jun, ZHONG Hui, DING Qi-zhong, CHEN Xiao-wu, XU Cheng-wei, REN Zong-dang. Influence of potassium salts on the decomposition of formaldehyde in supercritical water[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 302-308. shu

Influence of potassium salts on the decomposition of formaldehyde in supercritical water

  • Corresponding author: ZHANG Jun, 
  • Received Date: 2 September 2012
    Available Online: 26 November 2012

    Fund Project: 国家重点基础研究发展规划(973计划,2009CB220007) (973计划,2009CB220007)

  • The influences of potassium salts on the decomposition of formaldehyde in supercritical water were investigated in a continuous reactor under 400~650℃, 23~29 MPa and a residence time of 4~12 s, as formaldehyde is one of the most important intermediate products for the gasification of biomass with supercritical water. The results showed that KHCO3, K2CO3, KCl and mixed potassium salts are able to reduce the fraction CO in the gaseous product and increase the fraction of CO2, which then depresses the heating value of the gaseous product. All these potassium ingredients exhibit an inhibitive effect on the formation of H2, CO and CO2 and the gasification efficiency; the inhibition strength of various potassium ingredients follows the order of mixed potassium salts > KHCO3 > K2CO3 > KCl. The inhibitive effect on the formation of gaseous products is enhanced under high reaction temperature and long residence time, but is almost independent on the reaction pressure. Under high temperature, high pressure and long residence time, gas generation may be inhibited considerably by the mixed potassium salts, possibly due to a synergetic effect of different potassium salts.
  • 加载中
    1. [1]

      [1] 于洁, 肖宏. 生物质制氢技术研究进展[J]. 中国生物工程, 2006, 26(5): 107-112. (YU Jie, XIAO Hong. Advance in technologies of hydrogen production from biomass[J]. China Biotechnology, 2006, 26(5): 107-112.)

    2. [2]

      [2] GUO L J, LV Y J, ZHANG X M, JI C M, GUAN Y, PEI A X. Hydrogen production by biomass gasification in supercritical water: A systematic experimental and analytical study[J]. Catal Today, 2007, 129(3): 275-286.

    3. [3]

      [3] KRUSE A. Supercritical water gasification[J]. Biofuel Bioprod Bior, 2008, 2(5): 415-437.

    4. [4]

      [4] MADENO ĞLU T G, KURT S, SAGLAĞM M, YVKSEL M, GÖKKAYA D, BALLICE L. Hydrogen production from some agricultural residues by catalytic subcritical and supercritical water gasification[J]. J Supercrit Fluid, 2012, 76: 22-28.

    5. [5]

      [5] D'JES ÚS P, BOUKIS N, CZARNETZKI B K, DINJUS E. Gasification of corn and clover grass in supercritical water[J]. Fuel, 2006, 85(7): 1032-1038.

    6. [6]

      [6] AIDA T M, SHIRAISHI N, KUBO M, WATANABE M, SMITH R L. Reaction kinetics of D-xylose in sub- and supercritical water[J]. J Supercrit Fluid, 2010, 55(1): 208-216.

    7. [7]

      [7] SINAG A, KRUSE A, SCHWARZKOPF V. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3[J]. Ind Eng Chem Res, 2003, 45(5): 3516-3521.

    8. [8]

      [8] WATANABE M, OSADA M, INOMATA H, ARAI K, KRUSE A. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673K[J]. Appl Catal A-Gen, 2003, 245(2): 333-341.

    9. [9]

      [9] OSADA M, WATANABE M, SUE K, ADSCHIRI T, ARAI K. Water density dependence of formaldehyde reaction in supercritical water[J]. J Supercrit Fluid, 2004, 28(2): 219-224.

    10. [10]

      [10] 张国妮, 张军, 徐益谦. 超临界水中甲醛气化的实验研究[J]. 西安交通大学学报, 2008, 42(3): 372-376. (ZHANG Guo-ni, ZHANG Jun, XU Yi-qian. Experimental research on formaldehyde gasification in supercritical water[J]. Journal of Xi'an Jiaotong University, 2008, 42(3): 372-376.)

    11. [11]

      [11] OHNO K, MAEDA S. Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues[J]. J Phys Chem A, 2006, 110(28): 8933-8941.

    12. [12]

      [12] RAVEENDRAN K, GANESH A, KHILAR K C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12): 1812-1822.

    13. [13]

      [13] VAMVUKA D, TROULINOS S, KASTANAKI E. The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials[J]. Fuel, 2006, 85(12-13): 1763-1771.

    14. [14]

      [14] BLASI C D, BRANCA C, D'ERRICO G. Degradation characteristics of straw and washed straw[J]. Thermochim Acta, 2000, 364(1-2): 133-142.

    15. [15]

      [15] 赵亮, 张军, 盛昌栋, 张永春, 丁启忠, 王坤, 刘杨先. 内在钾元素对玉米芯超临界水气化制氢过程的影响[J]. 西安交通大学学报, 2011, 45(7): 15-21. (ZHAO Liang, ZHANG Jun, SHENG Chang-dong, ZHANG Yong-chun, DING Qi-zhong, WANG Kun, LIU Yang-xian. Influence of inherent potassium in corncob on hydrogen production with supercritical water gasification [J]. Journal of Xi'an Jiaotong University, 2011, 45(7): 15-21.)

    16. [16]

      [16] 张国妮. 超临界水中甲醛气化制氢的微观机理研究. 南京: 东南大学, 2007. (ZHANG Guo-ni. Study on the mechanisms of formaldehyde decomposition in supercritical water. Nanjing: Southeast University, 2007.)

    17. [17]

      [17] 余春江. 生物质热解机理和工程应用研究. 杭州: 浙江大学, 2000. (YU Chun-jiang. Biomass pyrolysis mechanism and engineering application research. Hangzhou: Zhejiang University, 2000.)

    18. [18]

      [18] WEI X L, SCHNELL U, HEIN K R G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation[J]. Fuel, 2005, 84(7-8): 841-848.

    19. [19]

      [19] BRYGOO H B, VINAUGER M, COLCOMBET J, EPHRITIKHINE G, FRACHISSE J, MAUREL C. Anion channels in higher plants: functional characterization, molecular structure and physiological role[J]. BBA-Biomembranes, 2010, 1465(1-2): 199-218.

    20. [20]

      [20] 郭献军. 生物质燃烧氯的析出与控制研究. 武汉: 华中科技大学, 2009. (GUO Xian-jun. Study on release and control of chlorine during biomass combustion. Wuhan: Huazhong University of Science and Technology, 2009.)

    21. [21]

      [21] BVHLER W, DINJUS E, EDERER H J, KRUSE A, MAS C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water[J]. J Supercrit Fluid, 2002, 22(1): 37-53.

    22. [22]

      [22] 李卫宏, 刘学武, 夏远景, 邓进军. 木质素在超临界水中气化制氢反应机理分析[J]. 中国农化机, 2011, (4): 60-63. (LI Wei-hong, LIU Xue-wu, XIA Yuan-jing, DENG Jin-jun. Reaction mechanism analysis on hydrogen production by gasification og lignin in supercritical water[J]. Chinese Agricultural Mechanization, 2011, (4): 60-63.)

    23. [23]

      [23] HAO X H, GUO L J, MAO X, ZHANG X M, CHEN X J. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water[J]. Int J Hydrogen Energ, 2003, 28(1): 55-64.

    24. [24]

      [24] ZHANG Y C, ZHANG J, ZHAO L, SHENG C D. Decomposition of formic acid in supercritical water[J]. Energ Fuel, 2009, 24(1): 95-99.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    3. [3]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(0)
  • Abstract views(393)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return