Citation: WANG Yin, LIU Shu-yuan, REN Ming-wei, XU Guang-wen. Fundamental study on Chinese herb residue pyrolysis and gasification by combining fluidized bed and fixed bed[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 294-301. shu

Fundamental study on Chinese herb residue pyrolysis and gasification by combining fluidized bed and fixed bed

  • Corresponding author: WANG Yin,  XU Guang-wen, 
  • Received Date: 6 August 2012
    Available Online: 1 October 2012

    Fund Project: 国家自然科学基金(51176197,21161140329,21006110,21006114) (51176197,21161140329,21006110,21006114)国家科技支撑项目(2012BAC03B05,2010BAC66B01) (2012BAC03B05,2010BAC66B01)国家高技术研究发展计划(863计划,2012AA021401)。 (863计划,2012AA021401)

  • The tar and char from a fluidized bed Chinese herb residue (CHR) pyrolysis were cracked and gasified in a fixed char bed. The change in chemical species of tar before and after passing through a fixed char bed was analyzed. The results show that increasing the residence time of tar and pyrolysis gas in the char bed from 0 s to 0.95 s causes a significant decrease in the chemical species containing -OH, C-H, C-O, C=O and C=C groups, but leads to an obvious increase in the aromatic species. Introducing steam into the char bed results in the formation of more species containing aromatic rings, C-O and -OH groups, while adding the oxygen to the atmosphere increases the amount of aromatic components but has little effect on the amount of species containing -OH, C-H, C=O, C=C and C-O. Both steam and oxygen are effective to remove tar from the gasification gas, but the effect of steam is relatively weaker. Introducing steam together with oxygen will have a rather higher tar removal efficiency, and the tar in the producer gas can be ignored.
  • 加载中
    1. [1]

      [1] 许光文, 纪文峰, 万印华, 刘春朝. 轻工业纤维素生物质过程残渣能源化技术[J]. 化学进展, 2007, 19(7): 1164-1176. (XU Guang-wen, JI Wen-feng, WAN Yin-hua, LIU Chun-chao. Energy production with light industrial biomass residues rich in cellulose[J]. Progress in Chemistry, 2007, 19(7): 1164-1176.)

    2. [2]

      [2] 邹艳敏, 吴静波, 仰榴青, 赵江丽, 吴向阳. 中药渣的综合利用研究进展[J]. 江苏中医药, 2008, 40(12): 113-115. (ZOU Yan-min, WU Jing-bo, YANG Liu-qing,ZHAO Jiang-li,WU Xiang-yang.Research progress of Chinese herbs residue utilization[J]. Jiangsu Chinese Medicine, 2008, 40(12): 113-115.)

    3. [3]

      [3] DEVI L, PTASINSKI K J, JANSSEN F J J G. A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass Bioenergy, 2003, 24(2): 125-140.

    4. [4]

      [4] MILNE T A, EVANS R J. Biomass gasifier "tars": Their nature, formation, and conversion. Colorado: NREL, 1998.

    5. [5]

      [5] HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview[J]. Renewable Sustainable Energy Rev, 2008, 12(2): 397-416.

    6. [6]

      [6] ZIAD A E, BRAMMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Ind Eng Chem Res, 2004, 43(22): 6911-6919.

    7. [7]

      [7] BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy Fuels, 2000, 14(4): 816-819.

    8. [8]

      [8] HENRIKSEN U, AHRENFELDT J, JESEN T K, GOBEL B, BENTZEN J D, HINDSGAUL C, SORENSEN L H. The design, construction and operation of a 75 kW two-stage gasifier[J]. Energy, 2006, 31(10/11): 1542-1553.

    9. [9]

      [9] MUN T Y, KANG B S, KIM J S. Production of a producer gas with high heating values and less tar from dried sewage sludge through air gasification using a two-stage gasifier and activated carbon[J]. Energy Fuels, 2009, 23(6): 3268-3276.

    10. [10]

      [10] SONI C G, WANG Z, DALAI A K, PUGSLEY T, FONSTAD T. Hydrogen production via gasification of meat and bone meal in two-stage fixed bed reactor system[J]. Fuel, 2009, 88(5): 920-925.

    11. [11]

      [11] ENCINAR J M, BELTRAN F J, BERNALTE A, RAMIRO A, GONZALEZ J F. Pyrolysis of two agricultural residues: Olive and grape bagasse: Influence of particle size and temperature[J]. Biomass Bioenergy, 1996, 11(5): 397-409.

    12. [12]

      [12] WANG Y, YOSHIKAWA K, NAMIOKA T, HASHIMOTO Y. Performance optimization of two-staged gasification system for woody biomass[J]. Fuel Process Technol, 2007, 88(3): 243-250.

    13. [13]

      [13] 王磊, 吴创之, 陈平, 阴秀丽, 谢军. 生物质气化焦油在高温木炭床上的裂解试验研究[J]. 可再生能源, 2005, 5: 30-34. (WANG Lei, WU Chuang-zhi,CHEN Ping,YIN Xiu-li, XIE Jun. Study of biomass tar cracking on high temperature char bed[J]. Renew Energ, 2005, 5: 30-34. )

    14. [14]

      [14] 苏毅, 陆方, 罗永浩, 杜云川. 60kW 两段式秸秆气化炉运行特性[J]. 太阳能学报, 2010, 31(1): 124-127. (SU Yi, LU Fang, LUO Yong-hao, DU Yun-chuan. Experimental study of the running characteristics about a 60KW two-stage straw gasifier[J]. Acta Energiae Solaris Sinica, 2010, 31(1):124-127.)

    15. [15]

      [15] 许光文, 刘新华, 高士秋. 制备无焦油产品气的贫氧流化燃烧下吸式气化方法及装置: 中国, CN1916123. 2005-08-19. (XU Guang-wen, LIU Xin-hua, GAO Shi-qiu. Method and equipment for producing fuel gas without tar via lean oxygen fluidized combustion coupled with downdraft gasification: CN, 1916123. 2005-08-19.)

    16. [16]

      [16] ZENG X, WANG Y, YU J, WU S, ZHONG M, XU S, XU G. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3), 1092-1098.

    17. [17]

      [17] ZENG X, WANG Y, YU J, WU S, ZHONG M, XU S, XU G. Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer[J]. Energy Fuels, 2011, 25(11): 5242-5249.

    18. [18]

      [18] ZIAD A E. Biomass char as an in-situ catalyst for tar removal in gasification systems. Enschede, Netherlands: Twente University, 2008.

    19. [19]

      [19] TANCREDI N, CORDERO T, RODRIGUEZ- MIRASOL J, RODRIGUEZ J J. CO2 gasification of Eucalyptus wood chars[J]. Fuel, 1996, 75(13): 1505-1508.

    20. [20]

      [20] SIMELL P, LEPPALAHTI J K, KURKELA E. Tar-decomposing activity of carbonate rocks under high CO2 partial pressure[J]. Fuel, 1995, 74(6): 938-945.

    21. [21]

      [21] GIL J, CABALLEROA M A, MARTIN J A, AZNAR M P, CORELLA J. Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions[J]. Ind Eng Chem Res, 1999, 38(11): 4226-4235.

    22. [22]

      [22] ORIO A, CORELLA J, NARVAEZ I. Performance of different dolomites on hot raw gas cleaning from biomass gasification with air[J]. Ind Eng Chem Res, 1997, 36(9): 3800-3808.

    23. [23]

      [23] SUTTON D, KELLEHER B, ROSS J R H. Review of literature on catalysts for biomass gasification[J]. Fuel Process Technol, 2001, 73(3):155-173.

    24. [24]

      [24] LEE S W, NAM S S, KIM S B, LEE K W, CHOI C S. The effect of Na2CO3 on the catalytic gasification of rice straw over nickel catalysts supported on Kieselguhr[J]. Korean J Chem Eng, 2000, 17(2): 174-178.

    25. [25]

      [25] DEVI L, PTASINSKI K J, JANSSEN F J J G, PAASEN S V B, BERGMAN P C A, KIEL J H A. Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine[J]. Renew Energ, 2005, 30(4): 565-587.

    26. [26]

      [26] CORELLA J, ORIO A, AZNAR P. Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts[J]. Ind Eng Chem Res, 1998, 37(12): 4617-4624.

    27. [27]

      [27] GUAN Y, GUO L J, ZHANG X M, LV Y J, HAO X H. Gasification of biomass model compounds in supercritical water[J]. Chem Ind Eng, 2006, 57(6): 1426-1431.

    28. [28]

      [28] SIMELL P A, HIRVENSALO E K, SMOLANDER V T. Steam reforming of gasification gas tar over dolomite with benzene as a model compound[J]. Ind Eng Chem Res, 1999, 38(4): 1250-1257.

    29. [29]

      [29] JESS A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448.

    30. [30]

      [30] HOUBEN M P, LANGE H C, STEENHOVEN A A. Tar reduction through partial combustion of fuel gas[J]. Fuel, 2005, 84(7/8): 817-824.

    31. [31]

      [31] DAYTON D C, EVANS R J. Laboratory gasification studies via partial oxidation of biomass pyrolysis vapors//Proceedings of the third biomass conference of the Americas. Canada: 1997, 1: 673-682.

    32. [32]

      [32] MINKOVA V, RAZVIGOROVA M, BJORNBOM E, ZANZI R, BUDINOVA T, PETROV N. Effect of water and biomass nature on the yield and quality of the pyrolysis products from biomass[J]. Fuel Process Technol, 2001, 70(1): 53-61.

    33. [33]

      [33] HOSOKAI S, KUMABE K, OHSHITA M, NORINAGA K, LI C Z, HAYASHI J I. Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity[J]. Fuel, 2008, 87(13/14): 2914-2922.

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Kejie Li Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080

    5. [5]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    6. [6]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    16. [16]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(0)
  • Abstract views(648)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return