Citation: LI Shuang, CHEN Jing-sheng, FENG Xiu-yan, YANG Bin, MA Xiao-xun. Catalytic pyrolysis of Huang Tu Miao coal: TG-FTIR study[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(3): 271-276. shu

Catalytic pyrolysis of Huang Tu Miao coal: TG-FTIR study

  • Corresponding author: MA Xiao-xun, 
  • Received Date: 13 August 2012
    Available Online: 30 November 2012

    Fund Project: 国家自然科学基金(21006078) (21006078)国家自然科学基金联合基金-面上项目(51174281) (51174281)陕西省教育厅自然科学研究专项(11JK0593) (11JK0593)陕西省科技计划(2012JQ2018)。 (2012JQ2018)

  • MOx/USY catalysts (M=Co,Mo,Co-Mo) were prepared by incipient wetness impregnation method. Catalytic pyrolysis of Huang Tu Miao (HTM) coal was investigated and the pyrolysis products were examined by TG-FTIR technique. TG results indicate that MOx/USY catalysts are effective in lowering degasifiction temperature (14, 23 and 9℃ respectively) in HTM coal pyrolysis. Kinetic calculations show that MOx/USY catalysts are effective in lowing activation energy of pyrolysis. FT-IR analyses show that the MOx/USY catalysts are effective in manipulating coal pyrolysis products. CoOx/USY catalyst promote the generation of CH4, CO and aromatic hydrocarbons and aliphatic hydrocarbons in HTM coal pyrolysis. MoOx/USY catalyst show little effect in manipulating pyrolysis products. CoOx-MoOx/USY catalyst is a promising catalyst in giving high yield of volatile products, however the pyrolysis temperature moved to high temperature region. These results indicate that different metal oxides incorporated zeolite USY have different impact on manipulating pyrolysis products.
  • 加载中
    1. [1]

      [1] 张培河. 低变质煤的煤层气开发潜力——以鄂尔多斯盆地侏罗系为例[J]. 煤田地质与勘探, 2007, 35(1): 29-33. (ZHANG Pei-he. Coalbed methane (CBM) development potential of low rank coal:A case study from Ordos Basin[J].Coal Geology & Exploration, 2007, 35(1): 29-33.)

    2. [2]

      [2] 国家发展和改革委员会能源研究所课题组. 中国2050年低碳发展之路:能源需求暨碳排放情景分析[M], 北京:科学出版社, 2009. (Energy Research Institute of The National Development and Reform Commission. China's low carbon development pathways by 2050: Senario analysis of energy demand and carbon emissions[M]. Beijing: Science Press, 2009.)

    3. [3]

      [3] 谢克昌, 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 化学工业出版社, 2010. (XIE Ke-chang, GAO Jin-sheng. Coal pyrolysis, coaking and coal tar processing[M]. Beijing: Chemical Industry Press, 2010.)

    4. [4]

      [4] 刘振宇. 煤炭能源中的化学问题[J]. 化学进展, 2000, 12(4): 458-462. (LIU Zhen-yu, Chemistry in coal energy[J]. Progress in Chemistry, 2000, 12(4): 458-462.)

    5. [5]

      [5] 王德海, 常丽萍. 煤制芳香化合物的探讨[J]. 煤化工, 2011, 39(4): 16-18. (Wang De-hai, CHANG Li-ping. Investigation on preparation of aromatic compounds from coal[J]. Coal Chemical Industry, 2011, 39(4): 16-18.)

    6. [6]

      [6] 董鹏伟, 岳君容, 高士秋, 许光文. 热预处理影响褐煤热解行为研究[J]. 燃料化学学报, 2012, 40(8): 897-905. (DONG Peng-wei, YUE Jun-rong, GAO Shi-qiu, XU Guang-wen. Influence of thermal pretreatment on pyrolysis of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 897-905.)

    7. [7]

      [7] LI W, WANG N, LI B Q. Product analysis of catalytic multi-stage hydropyrolysis of lignite[J]. Fuel, 2003, 82(5): 569-573.

    8. [8]

      [8] 陈静升, 马晓迅, 李爽, 郝婷, 马志超, 孙鸣, 王汝成, 徐龙. CoMoP/13X催化剂上黄土庙煤热解特性研究[J]. 煤炭转化, 2012, 35(1): 4-8. (CHEN Jing-sheng, MA Xiao-xun, LI Shuang, HAO Ting, MA Zhi-chao, SUN Ming, WANG Ru-cheng, XU Long. TG-IR study of Huang Tu Miao coal pyrolysis on CoMoP/13X catalyst[J]. Coal Conversion, 2012, 35(1): 4-8.)

    9. [9]

      [9] Takarada T, Onoyama Y, Takayama K, Sakashita T. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catal Today, 1997, 39(1/2): 127-136.

    10. [10]

      [10] 胡浩权, 周逊, 靳立军.利用烃类芳构化与煤热解耦合提高焦油产率的方法: 中国, 102161904. 2011-08-24. (HU Hao-quan, Zhou Xun, Jin Li-jun. Method for improving the yield of tar by hydrocarbon aromatization and coal pyrolysis: CN,102161904, 2011-08-24.)

    11. [11]

      [11] HAENEL M W. Recent progress in coal structure[J]. Fuel, 1992, 71(11): 1211-1223

    12. [12]

      [12] ZHAO G, YU W, XIAO Y. Study on brown coal pyrolysis and catalytic pyrolysis[J]. Adv Mater Res, 2011, 236-238: 660-663.

    13. [13]

      [13] ZHANG S, HAYASHI J I, LI C Z. Volatilization and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IX: Effects of volatile-char interactions on char-H2O and char-O2 reactivities[J]. Fuel, 2011, 90(4): 1655-1661.

    14. [14]

      [14] LI S, HAO T, CHEN J, MA X. Catalytic pyrolysis of Huang Tu Miao (HTM) coal over supported H-ZSM-5 zeolite[J]. Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry, 2011, 56(2): 279-280.

    15. [15]

      [15] LI S, CHEN J, HAO T, MA X. Effects of catalyst additives on catalytic pyrolysis of long flame coals: A TG-FTIR study[J]. Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry, 2011, 56(2): 281-282.

    16. [16]

      [16] LIU Q R, HU H Q, ZHOU Q, ZHU S W, CHEN G H. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis[J]. Fuel, 2004, 83(6): 713-718.

    17. [17]

      [17] YAN J, JIANG X, HAN X, LIU J. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317.

    18. [18]

      [18] 杜娟, 王俊宏, 崔银萍, 何秀风, 常丽萍. 西部煤热解过程中气相产物的生成与释放规律[J]. 中国矿业大学学报, 2008, 37(5): 694-698. (DU Juan, WANG Jun-hong, CUI Yin-ping, HE Xiu-feng, CHANG Li-ping. Forming and releasing of gaseous products of coal during pyrolysis in western China[J]. Journal of China University of Mining & Technology, 2008, 37(5): 694-698.)

    19. [19]

      [19] SOLOMON P R, HAMNLEN D G, SERIO M A, YU Z Z, CHARPENAY S. A characterization method and model for predicting coal conversion behaviour[J]. Fuel, 1993, 72(4): 469-488.

  • 加载中
    1. [1]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    16. [16]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    17. [17]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(576)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return