Citation:
GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. Effect of CO2 on pyrolysis behaviors of lignite[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(3): 257-264.
-
The pyrolysis of Huolinhe lignite under CO2 atmosphere was carried out in a thermobalance and a fast heating-up fixed bed reactor. The distribution of gases, char yield and its property such as element, surface structure, FT-IR spectra were analyzed. By this, the effect of CO2 on the pyrolysis behaviors was studied. The results show that CO2 gasification of the nascent char, which destroys the hydrogen-containing char structure, not only promotes cracking of benzene ring and fracture of hydroxyl, methyl and methylene groups etc., but also weakens the interaction between H and char matrix and increases the H fluidity, leading to the increase in the generation of H radicals. These H radicals can combine with other free radical fragments generated from fracture of the coal macromolecules to produce more volatiles. This will produce the char with a high specific surface and high pore volume and porosity. The introduction of CO2 promotes the coal pyrolysis and generation of volatile, resulting in decrease in char yield and increase in the evolution amount of H2, CO, CH4 and other small molecules hydrocarbons.
-
Keywords:
- CO2 atmosphere,
- pyrolysis behaviors,
- char property
-
-
-
[1]
[1] 王鹏, 文芳, 步学朋, 刘玉华, 边文, 邓一英. 煤热解特性研究[J]. 煤炭转化, 2005, 28(1): 8-13. (WANG Peng, WEN Fang, BU Xue-peng, LIU Yu-hua, BIAN Wen, DENG Yi-ying. Study on the pyrolysis characteristics of coal[J]. Coal Conversion, 2005, 28(1): 8-13.)
-
[2]
[2] DUAN L, ZHAO C, ZHOU W, QU C, CHEN X. Investigation on coal pyrolysis in CO2 atmosphere [J]. Energy Fuels, 2009, 23(7): 3826-3830.
-
[3]
[3] MESSENBÖCK R C, DUGWELL D R, KANDIYOTI R. Coal gasification in CO2 and steam: Development of a steam injection facility for high-pressure wire-mesh reactors[J]. Energy Fuels, 1999, 13(1): 122-129.
-
[4]
[4] JAMIL K, HAYASHI J I, LI C Z. Pyrolysis of a Victorian brown coal and gasication of nascent char in CO2 atmosphere in a wire-mesh reactor[J]. Fuel, 2004, 83(7/8): 833-843.
-
[5]
[5] NAREDI P, PISUPATI S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion[J]. Energy Fuels, 2011, 25(6): 2454-2459.
-
[6]
[6] MESSENBÖCK R, DUGWELL D R, KANDIYOTI R. CO2 and steam gasication in a high-pressure wire-mesh reactor: The reactivity of Daw Mill coal and combustion reactivity of its chars[J]. Fuel, 1999, 78(7): 781-793.
-
[7]
[7] 石金明, 向军, 张军营, 赵清森, 胡松, 孙路石, 苏胜. 兖州煤热演化过程中表面官能团结构研究[J]. 燃烧科学与技术, 2010, 16(3): 247-251. (SHI Jin-ming, XIANG Jun, ZHANG Jun-ying, ZHAO Qing-sen, HU Song, SUN Lu-shi, SHU Sheng. Surface functional groups structure during Yanzhou coal thermal maturity[J]. Journal of Combustion Science and Technology, 2010, 16(3): 247-251.)
-
[8]
[8] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31(5): 362-363. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. Journal of China University of Mining & Technology, 2002, 31(5): 362-363.)
-
[9]
[9] 张妮. 不同变质程度煤热解生成甲烷特征及反应机制. 太原: 太原理工大学, 2004. (ZHANG Ni. Reaction mechanisms and characteristics of methane generation during pyrolysis of different rank coals. Taiyuan: Taiyuan University of Technology, 2004.)
-
[10]
[10] MISIRLIO ĞLU Z, CANEL M, SINA Ğ A. Hydrogasication of chars under high pressures[J]. Energy Convers Manage, 2007, 48(1): 52-58.
-
[11]
[11] LEE C W, JENKINS R G, SCHOBET H H. Mechanisms and kinetics of rapid, elevated pressure pyrolysis of Illinois No. 6 bituminous coal[J]. Energy Fuels, 1991, 5(4): 547-555.
-
[12]
[12] CHANG L, XIE Z, XIE K-C, PRATT K C, HAYASHI J-I, CHIBA T, LI C-Z. Formation of NOx precursors during the pyrolysis of coal and biomass: Part VI effects of gas atmosphere on the formation of NH3 and HCN[J]. Fuel, 2003, 82(10): 1159-1166.
-
[13]
[13] 丘纪华. 煤粉在热分解过程中表面积和孔隙结构的变化 [J]. 燃料化学学报, 1994, 22(3): 316-320. (QIU Ji-hua. Variation of surface area and pore structure of pulverized coal during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 1994, 22(3): 316-320.)
-
[14]
[14] 崔丽杰, 姚建中, 林伟刚, 张峥. 喷动-载流床中温度对霍林河褐煤快速热解产物的影响[J]. 现代化工, 2003, 23(10): 28-32. (CUI Li-jie, YAO Jian-zhong, LIN Wei-gang, ZNAG Zheng. Effect of temperature on products of flash pyrolysis of lignite in a spouted-entrained bed[J]. Modern Chemical Industry, 2003, 23(10): 28-32.)
-
[15]
[15] PETER J J, TROMP F K, JACOB A M. Characterization of coal pyrolysis by means of differential scanning calorimeters: 2 Quantitative heat effects in a H2 and in a CO2 atmosphere[J]. Fuel Process Technol, 1989, 23(1): 63-74.
-
[16]
[16] 白宗庆, 陈皓侃, 李文, 李保庆. 热重-质谱联用研究焦炭在甲烷气氛下的热行为[J]. 燃料化学学报, 2005, 33(4): 426-430. (BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 426-430.)
-
[17]
[17] 朱学栋, 朱子杉, 唐黎华, 张成芳. 煤的热解研究:Ⅰ气氛和温度对热解的影响[J]. 华东理工大学学报, 1998, 24(1): 37-41. (ZHU Xue-dong, ZHU Zi-shan, TANG Li-hua, ZHANG Cheng-fang. Fundamental study on the pyrolysis of coals: I Effect of atmosphere and temperature on pyrolysis[J]. Journal of East China University of Science and Technology, 1998, 24(1): 37-41.)
-
[1]
-
-
-
[1]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[2]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[3]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[4]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[5]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[8]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[9]
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
-
[10]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[11]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[12]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[13]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[14]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[17]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[18]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[19]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[20]
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(378)
- HTML views(10)