Citation: ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 116-122. shu

Optimization of methanol steam reforming for hydrogen production

  • Corresponding author: PAN Li-wei,  WANG Shu-dong, 
  • Received Date: 5 July 2012
    Available Online: 25 September 2012

    Fund Project: 国家自然科学基金(21076206) (21076206) 国家重点基础研究发展规划(973计划,2010CB732302) (973计划,2010CB732302) 国家高技术研究发展计划(863计划, 2011AA050706)。 (863计划, 2011AA050706)

  • The catalytic performance of CuO/ZnO/CeO2/ZrO2 prepared by co-precipitation for methanol steam reforming was investigated using a statistical set of experiments in order to optimize the reaction conditions for obtaining minimal carbon monoxide in the reformed gas. The reaction temperature, steam to methanol ratio, methanol gas hourly space velocity (GHSV) were evaluated with a full factorial design experiment. The reaction temperature displayed much greater influence on the response (methanol conversion and CO concentration in reformed gas), GHSV has minimal influence on the CO concentration in reformed gas. At a fixed low methanol GHSV (300 h-1), a central composite rotatable design was then used to approximate the optimal conditions by simultaneously considering the methanol conversion and CO concentration. The optimum theoretical conditions were found to lie within a reaction temperature of 249~258℃ and a W/M ratio of 1.76~2.00, in close agreement with the experimental results.
  • 加载中
    1. [1]

      [1] LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.

    2. [2]

      [2] LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A, 2002, 234(1/2): 111-125.

    3. [3]

      [3] MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.

    4. [4]

      [4] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.

    5. [5]

      [5] HUANG G, LIAW B-J, JHANG C-J, CHEN Y-Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A, 2009, 358(1): 7-12.

    6. [6]

      [6] 潘相敏, 宋小瑜, 余瀛, 周伟, 马建新. 湿混法制备甲醇氧化重整制氢催化剂[J]. 燃料化学学报, 2005, 33(3): 339-343. (PAN Xiang-min, SONG Xiao-yu, YU Ying, ZHOU Wei, MA Jian-xin. Wet-mixed CuZnAlZr catalysts for oxidative steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 339-343.)

    7. [7]

      [7] AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A, 2003, 242(2): 233-245.

    8. [8]

      [8] CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxdiation of methanol over ZnO-supported palladium catalysts[J]. J Catal, 1998, 179(1): 150-162.

    9. [9]

      [9] MU X, PAN L, LIU N, ZHANG C, LI S, SUN G, WANG S. Autothermal reforming of methanol in a mini-reactor for miniature fuel cell[J]. Int J Hydrogen Energy, 2007, 32(15): 3327-3334.

    10. [10]

      [10] WANG C, LIU N, PAN L, WANG S, YUAN Z, WANG S. Measurement of concentration profiles over ZnO-Cr2O3/CeO2-ZrO2 monolithic catalyst in oxidative steam reforming of methanol[J]. Fuel Process Technol, 2007, 88(1): 65-71.

    11. [11]

      [11] LIU N, YUAN Z, WANG S, ZHANG C, WANG S, LI D. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for hydrogen production by methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6): 1643.

    12. [12]

      [12] LIU N, YUAN Z, WANG C, WANG S, ZHANG C, WANG S. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.

    13. [13]

      [13] CHEN G, YUAN Q, LI S. Microchannel reactor for methanol autothermal reforming[J]. Chin J Catal, 2002, 23(6): 491-492.

    14. [14]

      [14] PATEL S, PANT K K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J]. Chem Eng Sci, 2007, 62(18/20): 5436-5443.

    15. [15]

      [15] PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007, 88(8): 825- 832.

    16. [16]

      [16] ZHANG X R, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A, 2003, 194(1/2): 99-105.

    17. [17]

      [17] ZHANG X R, SHI P, ZHAO J, ZHAO M, LIU C. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.

    18. [18]

      [18] YANG H-M, LIAO P-H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J]. Appl Catal A, 2007, 317(2): 226-233.

    19. [19]

      [19] OGUCHI H, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Cu2O as active species in the stram reforming of methanol by CuO/ZrO2 catalysts[J]. Appl Catal A, 2005, 293(1/2): 64-70.

    20. [20]

      [20] TAKAHASHI T, INOUE M, KAI T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys[J]. Appl Catal A, 2001, 218(1/2): 189-195.

  • 加载中
    1. [1]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Qian Peng Pengfei Yao Zicong Wang Xiufang Xu Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012

    9. [9]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    11. [11]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    12. [12]

      Hui Li Wei Cheng Meng Yu Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    16. [16]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    17. [17]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    18. [18]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

Metrics
  • PDF Downloads(0)
  • Abstract views(765)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return