Citation:
ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(1): 116-122.
-
The catalytic performance of CuO/ZnO/CeO2/ZrO2 prepared by co-precipitation for methanol steam reforming was investigated using a statistical set of experiments in order to optimize the reaction conditions for obtaining minimal carbon monoxide in the reformed gas. The reaction temperature, steam to methanol ratio, methanol gas hourly space velocity (GHSV) were evaluated with a full factorial design experiment. The reaction temperature displayed much greater influence on the response (methanol conversion and CO concentration in reformed gas), GHSV has minimal influence on the CO concentration in reformed gas. At a fixed low methanol GHSV (300 h-1), a central composite rotatable design was then used to approximate the optimal conditions by simultaneously considering the methanol conversion and CO concentration. The optimum theoretical conditions were found to lie within a reaction temperature of 249~258℃ and a W/M ratio of 1.76~2.00, in close agreement with the experimental results.
-
-
-
[1]
[1] LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.
-
[2]
[2] LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A, 2002, 234(1/2): 111-125.
-
[3]
[3] MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.
-
[4]
[4] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.
-
[5]
[5] HUANG G, LIAW B-J, JHANG C-J, CHEN Y-Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A, 2009, 358(1): 7-12.
-
[6]
[6] 潘相敏, 宋小瑜, 余瀛, 周伟, 马建新. 湿混法制备甲醇氧化重整制氢催化剂[J]. 燃料化学学报, 2005, 33(3): 339-343. (PAN Xiang-min, SONG Xiao-yu, YU Ying, ZHOU Wei, MA Jian-xin. Wet-mixed CuZnAlZr catalysts for oxidative steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 339-343.)
-
[7]
[7] AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A, 2003, 242(2): 233-245.
-
[8]
[8] CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxdiation of methanol over ZnO-supported palladium catalysts[J]. J Catal, 1998, 179(1): 150-162.
-
[9]
[9] MU X, PAN L, LIU N, ZHANG C, LI S, SUN G, WANG S. Autothermal reforming of methanol in a mini-reactor for miniature fuel cell[J]. Int J Hydrogen Energy, 2007, 32(15): 3327-3334.
-
[10]
[10] WANG C, LIU N, PAN L, WANG S, YUAN Z, WANG S. Measurement of concentration profiles over ZnO-Cr2O3/CeO2-ZrO2 monolithic catalyst in oxidative steam reforming of methanol[J]. Fuel Process Technol, 2007, 88(1): 65-71.
-
[11]
[11] LIU N, YUAN Z, WANG S, ZHANG C, WANG S, LI D. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for hydrogen production by methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6): 1643.
-
[12]
[12] LIU N, YUAN Z, WANG C, WANG S, ZHANG C, WANG S. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.
-
[13]
[13] CHEN G, YUAN Q, LI S. Microchannel reactor for methanol autothermal reforming[J]. Chin J Catal, 2002, 23(6): 491-492.
-
[14]
[14] PATEL S, PANT K K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J]. Chem Eng Sci, 2007, 62(18/20): 5436-5443.
-
[15]
[15] PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007, 88(8): 825- 832.
-
[16]
[16] ZHANG X R, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A, 2003, 194(1/2): 99-105.
-
[17]
[17] ZHANG X R, SHI P, ZHAO J, ZHAO M, LIU C. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.
-
[18]
[18] YANG H-M, LIAO P-H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J]. Appl Catal A, 2007, 317(2): 226-233.
-
[19]
[19] OGUCHI H, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Cu2O as active species in the stram reforming of methanol by CuO/ZrO2 catalysts[J]. Appl Catal A, 2005, 293(1/2): 64-70.
-
[20]
[20] TAKAHASHI T, INOUE M, KAI T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys[J]. Appl Catal A, 2001, 218(1/2): 189-195.
-
[1]
-
-
-
[1]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[4]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[5]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[6]
Haifeng Ma , Xiaocong Tian , Fengbin Wang , Zhonghua Xi , QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056
-
[7]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[8]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[9]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[10]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[11]
Qian Peng , Pengfei Yao , Zicong Wang , Xiufang Xu , Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012
-
[12]
Feixue Gao , Lu Zhao , Xiangjian Shen , Junlin Yang , Yongjun Chen . Optimizing the Funding Allocation in Physical Chemistry, Improving the Grant Effectiveness of Science Foundation. Acta Physico-Chimica Sinica, 2024, 40(3): 2309009-0. doi: 10.3866/PKU.WHXB202309009
-
[13]
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
-
[14]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[15]
Fangfang Chen , Haiming Fan , Yan Li , Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108
-
[16]
Hui Li , Wei Cheng , Meng Yu , Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047
-
[17]
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
-
[18]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
-
[19]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[20]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(801)
- HTML views(93)