Citation: ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 96-101. shu

Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation

  • Corresponding author: CHU Wei, 
  • Received Date: 18 June 2012
    Available Online: 19 August 2012

    Fund Project: 国家自然科学基金(205903603)。 (205903603)

  • Ni/SiO2 catalysts were prepared by impregnation method and treated by glow discharge plasma. The Ni/SiO2 catalysts were characterized by CO2-TPD and H2-TPR; the effects of plasma treatment on the performances of Ni/SiO2 in adsorption, reduction, and catalytic methanation of CO2 were investigated. The results showed that the plasma treatment can remarkably improve the dispersion of active components and enhance the reactivity of Ni/SiO2 catalyst. The catalytic performance of Ni/SiO2 in CO2 methanation is also enhanced by the plasma treatment; the conversion of CO2 and the space time yield of CH4 over the plasma modified catalyst are higher than those over the Ni/SiO2 catalyst obtained through conventional impregnation and calcination method.
  • 加载中
    1. [1]

      [1] 郭芳, 储伟, 石新雨, 张旭. 等离子体引入方式对强化制备二氧化碳重整甲烷反应的Ni/γ- Al2O3催化剂的影响[J]. 高等学校化学学报, 2009, 30(4): 746-751. (GUO Fang, CHU Wei, SHI Xin-Yu, ZHANG Xu. Effects of plasma introduction mode on Ni/γ-Al2O3 catalysts for CH4 reforming with CO2[J]. Chemical Research in Chinese Universities, 2009, 30(4): 746-751.)

    2. [2]

      [2] 徐慧根, 姜恩勇, 盛京, 徐廷献, 李振花. 等离子体技术与应用[M]. 北京: 化学工业出版社, 2006. (XU Hui-gen, JIANG En-yong, SHENG Jing, XU Ting-xian, LI Zhen-hua. Plasma technology and application[M]. Beijing: Chemical Industry Press, 2006.)

    3. [3]

      [3] CHU P K, CHEN J Y, WANG L P, HUANG N. Plasma-surface modification of biomaterials[J]. Mater Sci Eng R, 2003, 36(5/6): 143-206.

    4. [4]

      [4] 于开录, 刘昌俊, 夏清, 邹吉军. 低温等离子体技术在催化剂领域的应用[J]. 化学进展, 2002, 4(6): 456-461. (YU Kai-lu, LIU Chang-jun, XIA Qing, ZOU Ji-jun. Applications of low temperature plasma in catalysis [J]. Progress in Chemistry, 2002, 14(6): 456-461.)

    5. [5]

      [5] 邹吉军. 等离子体处理制备高效催化剂的基础研究[D]. 天津:天津大学, 2005. (ZOU Ji-jun. On the preparation of highly efficient catalysts using cold plasma treatment[D]. Tianjin: Tianjin University, 2005.)

    6. [6]

      [6] SHI P, LIU C-J. Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment[J]. Catal Lett, 2009, 133(1/2): 112-118.

    7. [7]

      [7] GUO X Y, SUN Y L, YU Y, ZHU X, LIU C J. Carbon formation and steam reforming of methane on silica supported nickel catalysts[J]. Catal Commun, 2012, 19: 61- 65.

    8. [8]

      [8] LIU C J, YE J Y, JIANG J J, PAN Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. Chem Cat Chem, 2011, 3(3): 529- 541.

    9. [9]

      [9] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Inform, 2007, 107(5): 1692-1744.

    10. [10]

      [10] ZHANG Y, CHU W, CAO W M, LUO C R, WEN X G, ZHOU K L. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas[J]. Plasma Chem Plasma P, 2000, 20(1): 137-144.

    11. [11]

      [11] CHEN M H, CHU W, DAI X Y. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene[J]. Catal Today, 2004, 89(1/2): 201-204.

    12. [12]

      [12] LIU C J, YU K L, ZHANG Y P, ZHU X L, HE F, ELIASSON B. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion[J]. Appl Catal B, 2004, 47(2): 95-100.

    13. [13]

      [13] 徐慧远, 储伟, 慈志敏. 辉光放电等离子体对合成甲醇用铜基催化剂的改性作用[J]. 物理化学学报, 2007, 23(7): 1042-1046. (XU Hui-yuan, CHU Wei, CI Zhi-min. Effect of glow discharge plasma on copper-based catalysts for methanol synthesis[J]. Acta Phys-Chim Sin, 2007, 23(7): 1042-1046.)

    14. [14]

      [14] 徐慧远, 储伟, 士丽敏, 张辉, 周俊. 射频等离子体技术制备合成低碳醇用铜钴基催化剂[J]. 物理化学学报, 2008, 24(6): 1085-1089. (XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, ZHOU Jun. Preparation of copper-cobalt catalyst by glow discharge plasma for lower alcohols synthesis[J]. Acta Phys-Chim Sin, 2008, 24(6): 1085-1089.)

    15. [15]

      [15] 张月萍, 祝新利, 潘云翔, 刘昌俊. 等离子体处理制备对甲烷重整Ni基催化剂抗积炭性能的改进[J]. 催化学报, 2008, 19(10):1058-1066. (ZHANG Yue-ping, ZHU Xin-li, PAN Yun-xiang, LIU Chang-jun. Improvement of coke resistance performance of Ni-based catalysts in methane reforming via glow discharge plasma treatment[J]. Chinese Journal of Catalysis, 2008, 19(10): 1058-1066.)

    16. [16]

      [16] DADASHOVA E A, YAGODOVSKAYA T V, LUNIN V V, KISELEV V V, SHPIRO E S, BEILIN L A. The regeneration of the Fe2O3/ZSM-5 catalyst for Fischer-Tropsch synthesis in oxygen glow discharge[J]. Kinet Catal, 1993, 34(4): 670-673.

    17. [17]

      [17] 李代红, 习敏, 陶旭梅, 石新雨, 戴晓雁, 印永祥. 常压等离子体还原的Ni/γ-Al2O3催化剂的程序升温脱附研究[J]. 催化学报, 2008, 29(3): 287-291. (LI Dai-hong, XI Min, TAO Xu-mei, SHI Xin-yu, DAI Xiao-yan, YIN Yong-xiang. TPD studies on Ni/γ-Al2O3 catalysts reduced by atmosphere plasma[J]. Chinese Journal of Catalysis, 2008, 29(3): 287-291.)

    18. [18]

      [18] ZOU J-J, ZHANG Y-P, LIU C-J, LI Y, ELIASSON B. Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges[J]. Plasma Chem Plasma P, 2003, 23(1): 69-82.

    19. [19]

      [19] 郭芳, 储伟, 徐慧远, 张涛. 采用等离子体强化制备CO2甲烷化用镍基催化剂[J]. 催化学报, 2007, 28(5): 429-434. (GUO Fang, CHU Wei, XU Hui-yuan, ZHANG Tao. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation [J]. Chinese Journal of Catalysis, 2007, 28(5): 429-434.)

    20. [20]

      [20] 徐慧远, 储伟, 士丽敏, 张辉, 邓思玉. 射频等离子体对合成低碳醇用CuCoAl催化剂的改性作用[J]. 燃料化学学报, 2009, 37(2): 212-216. (XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohol synthesis[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 212-216. )

    21. [21]

      [21] XAVIER K O, SREEKALA R, RASHID K K A, YUSUFF K K M, SEN B. Doping effects of cerium oxide on Ni/ Al2O3 catalysts for methanation[J]. Catal Today, 1999, 49(1/3): 17- 21.

    22. [22]

      [22] TAO X M, BAI M G, LI X, LONG H L, SHANG S Y, YIN Y X, DAI X Y. CH4-CO2 reforming by plasma-challenges and opportunities[J]. Prog Energ Combust, 2011, 37(2): 113-124.

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(562)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return