Citation: ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 96-101. shu

Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation

  • Corresponding author: CHU Wei, 
  • Received Date: 18 June 2012
    Available Online: 19 August 2012

    Fund Project: 国家自然科学基金(205903603)。 (205903603)

  • Ni/SiO2 catalysts were prepared by impregnation method and treated by glow discharge plasma. The Ni/SiO2 catalysts were characterized by CO2-TPD and H2-TPR; the effects of plasma treatment on the performances of Ni/SiO2 in adsorption, reduction, and catalytic methanation of CO2 were investigated. The results showed that the plasma treatment can remarkably improve the dispersion of active components and enhance the reactivity of Ni/SiO2 catalyst. The catalytic performance of Ni/SiO2 in CO2 methanation is also enhanced by the plasma treatment; the conversion of CO2 and the space time yield of CH4 over the plasma modified catalyst are higher than those over the Ni/SiO2 catalyst obtained through conventional impregnation and calcination method.
  • 加载中
    1. [1]

      [1] 郭芳, 储伟, 石新雨, 张旭. 等离子体引入方式对强化制备二氧化碳重整甲烷反应的Ni/γ- Al2O3催化剂的影响[J]. 高等学校化学学报, 2009, 30(4): 746-751. (GUO Fang, CHU Wei, SHI Xin-Yu, ZHANG Xu. Effects of plasma introduction mode on Ni/γ-Al2O3 catalysts for CH4 reforming with CO2[J]. Chemical Research in Chinese Universities, 2009, 30(4): 746-751.)

    2. [2]

      [2] 徐慧根, 姜恩勇, 盛京, 徐廷献, 李振花. 等离子体技术与应用[M]. 北京: 化学工业出版社, 2006. (XU Hui-gen, JIANG En-yong, SHENG Jing, XU Ting-xian, LI Zhen-hua. Plasma technology and application[M]. Beijing: Chemical Industry Press, 2006.)

    3. [3]

      [3] CHU P K, CHEN J Y, WANG L P, HUANG N. Plasma-surface modification of biomaterials[J]. Mater Sci Eng R, 2003, 36(5/6): 143-206.

    4. [4]

      [4] 于开录, 刘昌俊, 夏清, 邹吉军. 低温等离子体技术在催化剂领域的应用[J]. 化学进展, 2002, 4(6): 456-461. (YU Kai-lu, LIU Chang-jun, XIA Qing, ZOU Ji-jun. Applications of low temperature plasma in catalysis [J]. Progress in Chemistry, 2002, 14(6): 456-461.)

    5. [5]

      [5] 邹吉军. 等离子体处理制备高效催化剂的基础研究[D]. 天津:天津大学, 2005. (ZOU Ji-jun. On the preparation of highly efficient catalysts using cold plasma treatment[D]. Tianjin: Tianjin University, 2005.)

    6. [6]

      [6] SHI P, LIU C-J. Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment[J]. Catal Lett, 2009, 133(1/2): 112-118.

    7. [7]

      [7] GUO X Y, SUN Y L, YU Y, ZHU X, LIU C J. Carbon formation and steam reforming of methane on silica supported nickel catalysts[J]. Catal Commun, 2012, 19: 61- 65.

    8. [8]

      [8] LIU C J, YE J Y, JIANG J J, PAN Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. Chem Cat Chem, 2011, 3(3): 529- 541.

    9. [9]

      [9] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Inform, 2007, 107(5): 1692-1744.

    10. [10]

      [10] ZHANG Y, CHU W, CAO W M, LUO C R, WEN X G, ZHOU K L. A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas[J]. Plasma Chem Plasma P, 2000, 20(1): 137-144.

    11. [11]

      [11] CHEN M H, CHU W, DAI X Y. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene[J]. Catal Today, 2004, 89(1/2): 201-204.

    12. [12]

      [12] LIU C J, YU K L, ZHANG Y P, ZHU X L, HE F, ELIASSON B. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion[J]. Appl Catal B, 2004, 47(2): 95-100.

    13. [13]

      [13] 徐慧远, 储伟, 慈志敏. 辉光放电等离子体对合成甲醇用铜基催化剂的改性作用[J]. 物理化学学报, 2007, 23(7): 1042-1046. (XU Hui-yuan, CHU Wei, CI Zhi-min. Effect of glow discharge plasma on copper-based catalysts for methanol synthesis[J]. Acta Phys-Chim Sin, 2007, 23(7): 1042-1046.)

    14. [14]

      [14] 徐慧远, 储伟, 士丽敏, 张辉, 周俊. 射频等离子体技术制备合成低碳醇用铜钴基催化剂[J]. 物理化学学报, 2008, 24(6): 1085-1089. (XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, ZHOU Jun. Preparation of copper-cobalt catalyst by glow discharge plasma for lower alcohols synthesis[J]. Acta Phys-Chim Sin, 2008, 24(6): 1085-1089.)

    15. [15]

      [15] 张月萍, 祝新利, 潘云翔, 刘昌俊. 等离子体处理制备对甲烷重整Ni基催化剂抗积炭性能的改进[J]. 催化学报, 2008, 19(10):1058-1066. (ZHANG Yue-ping, ZHU Xin-li, PAN Yun-xiang, LIU Chang-jun. Improvement of coke resistance performance of Ni-based catalysts in methane reforming via glow discharge plasma treatment[J]. Chinese Journal of Catalysis, 2008, 19(10): 1058-1066.)

    16. [16]

      [16] DADASHOVA E A, YAGODOVSKAYA T V, LUNIN V V, KISELEV V V, SHPIRO E S, BEILIN L A. The regeneration of the Fe2O3/ZSM-5 catalyst for Fischer-Tropsch synthesis in oxygen glow discharge[J]. Kinet Catal, 1993, 34(4): 670-673.

    17. [17]

      [17] 李代红, 习敏, 陶旭梅, 石新雨, 戴晓雁, 印永祥. 常压等离子体还原的Ni/γ-Al2O3催化剂的程序升温脱附研究[J]. 催化学报, 2008, 29(3): 287-291. (LI Dai-hong, XI Min, TAO Xu-mei, SHI Xin-yu, DAI Xiao-yan, YIN Yong-xiang. TPD studies on Ni/γ-Al2O3 catalysts reduced by atmosphere plasma[J]. Chinese Journal of Catalysis, 2008, 29(3): 287-291.)

    18. [18]

      [18] ZOU J-J, ZHANG Y-P, LIU C-J, LI Y, ELIASSON B. Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges[J]. Plasma Chem Plasma P, 2003, 23(1): 69-82.

    19. [19]

      [19] 郭芳, 储伟, 徐慧远, 张涛. 采用等离子体强化制备CO2甲烷化用镍基催化剂[J]. 催化学报, 2007, 28(5): 429-434. (GUO Fang, CHU Wei, XU Hui-yuan, ZHANG Tao. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation [J]. Chinese Journal of Catalysis, 2007, 28(5): 429-434.)

    20. [20]

      [20] 徐慧远, 储伟, 士丽敏, 张辉, 邓思玉. 射频等离子体对合成低碳醇用CuCoAl催化剂的改性作用[J]. 燃料化学学报, 2009, 37(2): 212-216. (XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohol synthesis[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 212-216. )

    21. [21]

      [21] XAVIER K O, SREEKALA R, RASHID K K A, YUSUFF K K M, SEN B. Doping effects of cerium oxide on Ni/ Al2O3 catalysts for methanation[J]. Catal Today, 1999, 49(1/3): 17- 21.

    22. [22]

      [22] TAO X M, BAI M G, LI X, LONG H L, SHANG S Y, YIN Y X, DAI X Y. CH4-CO2 reforming by plasma-challenges and opportunities[J]. Prog Energ Combust, 2011, 37(2): 113-124.

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(0)
  • Abstract views(584)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return