Citation: Mohammad Karimi, Forouzan Aboufazeli, Hamid Reza Lotfi Zadeh Zhad, Omid Sadeghi, Ezzatollah Najafi. Electrocatalytic performance of Pt/Ru/Sn/W fullerene electrode for methanol oxidation in direct methanol fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 91-95. shu

Electrocatalytic performance of Pt/Ru/Sn/W fullerene electrode for methanol oxidation in direct methanol fuel cell

  • Received Date: 6 August 2012
    Available Online: 20 October 2012

    Fund Project: Financial support from Renewable Energy Organization of Iran (SUNA). (SUNA)

  • In this work, fullerene was modified by platinum, ruthenium, tin and tungsten nanoparticles. The material was characterized by XRD, ICP-OES and TEM micrograph. The average nanoparticle size on fullerene was 5~8 nm. The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell. A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry. The catalyst showed good reactivity for methanol oxidation.
  • 加载中
    1. [1]

      [1] ABDEL AAL A, HASSAN H B. Electrodeposited nanocomposite coatings for fuel cell application[J]. J Alloys Comp, 2009, 477(1/2): 652-656.

    2. [2]

      [2] ABDEL RAHIM M A, HASSAN H B. Titanium and platinum modified titanium electrodes as catalysts for methanol electrooxidation[J]. Thin Solid Films, 2009, 517(11): 3362-3369.

    3. [3]

      [3] LAMY C, LIMA A, LERHUN V, DELIME F, COUTANCEAU C, LEGER J M. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. J Power Sources, 2002, 105(2): 283-296.

    4. [4]

      [4] HAMNETT A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catal Today 1997, 38(4): 445-457.

    5. [5]

      [5] WEBER M F, DIGNAM M J, PARK S M, VENTER R D. Kinetics of oxygen reduction on sputtered platinum[J]. Electrochem Soc, 1986, 133(4): 734-738.

    6. [6]

      [6] CHOI W C, KIM J D, WOO S I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry[J]. Catal Today, 2002, 74(3/4): 235-240.

    7. [7]

      [7] WANG M, GUO D-J, LI H-L. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation[J]. J Solid State Electrochem, 2005, 178(6): 1996-2000.

    8. [8]

      [8] GUO D J, LI H L. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J]. Carbon, 2005, 43(6): 1259-1264.

    9. [9]

      [9] MAIYALAGAN T, VISWANATHAN B, VARADARAJU U. Nitrogen containing carbon nanotubes as supports for Pt–Alternate anodes for fuel cell applications[J]. Electrochem Commun, 2005, 7(9): 905-912.

    10. [10]

      [10] WANG C-H, SHIH H-C, TSAI Y-T, DU H-Y, CHEN L-C, CHEN K-H. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth[J]. Electrochim Acta, 2006, 52(4): 1612-1617.

    11. [11]

      [11] CHOI B, YOON H, PARK I S, JANG J, SUNG Y E. Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation[J]. Carbon, 2007, 45(13): 2496-2501.

    12. [12]

      [12] KONDO T, SUZUKI T, NAKAMURA J. Nitrogen doping of graphite for enhancement of durability of supported platinum clusters[J]. J Phys Chem Lett, 2011, 2(6): 577-580.

    13. [13]

      [13] SHRESTHA S, MUSTAIN W E. Platinum nanoparticles supported on N-functionalized mesoporous Carbon[J]. Electrochem Soc Trans, 2010, 33(1): 293-302.

    14. [14]

      [14] KROTO H W, HEATH J R, OBRIEN S C, CURL R F, SMALLEY R E. C60: Buckminsterfullerene[J]. Nature, 1985, 318(1): 162-163.

    15. [15]

      [15] HU F P, SHEN P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst[J]. J Power Sources, 2007, 137(2): 877-881.

    16. [16]

      [16] VINODGOPAL K, HARIA M, MEISEL D, KAMAT P. Fullerene-based carbon nanostructures for methanol oxidation[J]. Nano Letters, 2004, 4(3): 415-418.

    17. [17]

      [17] CAMERON D S, HARDS G A, HARRISON B, POTTER R J. Direct methanol fuel cells: Developments in the search for improved performance[J]. Platinum Metals Rev, 1987, 31(4): 173-181.

    18. [18]

      [18] FUJIMOTO C H, HICKNER M A, CORNELIUS C J, LOY D A. Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: Synthesis and physical properties of a novel polyelectrolyte[J]. Macromolecules, 2005, 38(12): 5010-5016.

    19. [19]

      [19] SPENDELOW J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Phy Chem Chem Phys, 2007, 9(21): 2654-2675.

    20. [20]

      [20] TRIPKOVIC A V, POPOVIC K D, GRGUR B N, BLIZANAC B, ROSS P N, MARKOVIC N M. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions[J]. Electrochim Acta, 2002, 47(22/23): 3707-3714.

    21. [21]

      [21] ARIC A S, POLTARZEWSKI Z, KIM H, MORANA A, GIORDANO N, ANTONUCCI V. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells[J]. J Power Sources, 1995, 55(2): 159-166

    22. [22]

      [22] NEKOOI P, AMINI M K. Effect of support type and synthesis conditions on the oxygen reduction activity of RuxSey catalyst prepared by the microwave polyol method[J]. Electrochim Acta, 2010, 55(9): 3286-3894.

    23. [23]

      [23] XU C, CHENG L, SHEN P, LIU Y. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media[J]. Electrochem Commun, 2007, 9(5): 997-1001.

    24. [24]

      [24] SANMANT P V, FERNANDES J B, RANGEL C M, FIGUEIREDO J L. Carbon xerogel supported Pt and Pt-Ni catalysts for electro-oxidation of methanol in basic medium[J]. Catal Today, 2005, 102-103(1): 173-176.

    25. [25]

      [25] GUO D J, LI H L. High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles[J]. J Electroanal Chem, 2004, 573(1): 197-202.

    26. [26]

      [26] WANG H J, YU H, PENG F, LV P. Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts[J]. Electrochem Commun, 2006, 8(3): 499-504.

    27. [27]

      [27] SUN Z-P, ZHANG X-G, LIU R-L, LIANG Y-Y, LI H-L. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J]. J Power Sources, 2008, 185(2): 801-806.

    28. [28]

      [28] LI H, SUN G, JIANG Q, ZHU M, SUN S, XIN Q. Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process[J]. J Power Sources, 2007, 172(2): 641-649.

    29. [29]

      [29] WANG Z, GAO G, ZHU H, SUN Z, LIU H, ZHAO X. Electrodeposition of platinum microparticle interface on conducting polymer film modified nichrome for electrocatalytic oxidation of methanol[J]. Int J Hydrogen Energy, 2009, 34(23) 9334-9340.

    30. [30]

      [30] XING L, JIA J, WANG Y, ZHANG B, DONG S. Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation[J]. Int J Hydrogen Energy, 2010, 35(22): 12169-12173.

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    3. [3]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    4. [4]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    5. [5]

      Linlin YuXueli LiuRui GaoJialin MingYi QiuJie SuLiangbing Gan . Selective preparation of 18-membered open-cage fullerene with one imino and five carbonyl groups on the rim of the orifice. Chinese Chemical Letters, 2025, 36(6): 110382-. doi: 10.1016/j.cclet.2024.110382

    6. [6]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    9. [9]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    10. [10]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    11. [11]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    14. [14]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    15. [15]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    16. [16]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    17. [17]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    18. [18]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    19. [19]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    20. [20]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

Metrics
  • PDF Downloads(0)
  • Abstract views(367)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return