Citation: WANG Jian, ZHANG Shou-yu, GUO Xi, DONG Ai-xia, CHEN Chuan, XIONG Shao-wu, FANG Yi-tian. Co-pyrolysis of Pingshuo coal and biomass[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 67-73. shu

Co-pyrolysis of Pingshuo coal and biomass

  • Corresponding author: ZHANG Shou-yu, 
  • Received Date: 29 June 2012
    Available Online: 10 August 2012

    Fund Project: 国家科技支撑计划(2012BAA04B00, 2012BAA04B01)。 (2012BAA04B00, 2012BAA04B01)

  • An experimental study on co-pyrolysis of biomass and Pingshuo coal was performed using temperature programmed thermogravimetric analysis under atmospheric pressure in high purity nitrogen (99.999%). Sawdust and rice straw were chosen as biomass feedstocks. The final pyrolysis temperature was designed as 1 273 K and the heating rate was 10 K/min, and the mixture ratios of the biomass were 20%, 50% and 70% respectively. The results indicate that the initial temperature of volatile emission from Pingshuo coal and the temperature corresponding to the maximum pyrolysis conversion during co-pyrolysis vary with the ratio of biomass. Moreover, in co-pyrolysis there is difference between the experimental and calculated DTG curves. In addition, the method of Coats-Redfern was used to calculate the activation energy and frequency factor of pyrolysis for the coal and biomass. The results show that the activation energy and frequency factor change with the mixing ratio of the biomass, and it can be deduced that there exist the synergetic effects between the biomass and Pingshuo coal during their co-pyrolysis process.
  • 加载中
    1. [1]

      [1] 宋春财, 胡浩权, 朱盛维, 朱英华. 生物质秸秆热重分析及几种动力学模型结果比较[J]. 燃料化学学报, 2003, 31(4): 311-316. (SONG Chun-cai, HU Hao-quan, ZHU Sheng-wei, ZHU Ying-hua. Biomass pyrolysis and its kinetic parameters with different methods[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 311-316.)

    2. [2]

      [2] JONES J M, KUBACKI M, KUBICA K, ROSS A B, WILLIAMS A. Devolatilisation characteristics of coal and biomass blends[J]. J Anal Appl Pyrolysis, 2005, 74(2): 502-511.

    3. [3]

      [3] WEI L G, ZHANG L, XU S P. Effects of feedback on co-pyrolysis of biomass and coal in a free-fall reactor[J]. Journal of Fuel Chemistry and Technology, 2011, 39(10): 728-734.

    4. [4]

      [4] 阎维平, 陈吟颖. 生物质混合物与煤共热解的协同特性[J]. 中国电机工程学报, 2007, 27(2): 80-86. (YAN Wei-ping, CHEN Yin-ying. Interaction performance of co-pyrolysis of biomass mixture and coal of different rank[J]. Proceedings of the CSEE, 2007, 27(2): 80-86.)

    5. [5]

      [5] COLLOT A G, ZHUO Y, DUGWELL D R, KANDIYOTI R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed bed and fluidized bed reactors[J]. Fuel, 1999, 78(6): 667-679.

    6. [6]

      [6] PAN Y G, VELO E, PUIGJANER L. Pyrolysis of blends of biomass with poor coals[J]. Fuel, 1996, 75(4): 412-418.

    7. [7]

      [7] 李文, 李宝庆, 孙成功, 尉迟唯, 曹变英. 生物质热解、加氢热解及其与煤共热解的热重研究[J]. 燃料化学学报, 1996, 24(4): 341-347. (LI Wen, LI Bao-qing, SUN Cheng-gong, YUCHI Wei, CAO Bian-ying. Study on pyrolysis and hydropyrolysis of biomass and copyrolysis between biomass and coal[J]. Journal of Fuel Chemistry and Technology, 1996, 24(4): 341-347.)

    8. [8]

      [8] 李世光, 徐绍平. 煤与生物质的共热解[J]. 煤炭转化, 2002, 25(1): 7-12. (LI Shi-guang, XU Shao-ping. Co-pyrolysis of coal and biomass[J]. Coal Conversion, 2002, 25(1): 7-12.)

    9. [9]

      [9] 孙学信. 燃煤锅炉燃烧试验技术与方法[M]. 北京: 中国电力出版社, 2002. (SUN Xue-xin. Technology and method of combustion in coal boiler[M]. Beijing: China Electric Power Press, 2002.)

    10. [10]

      [10] DARMSTADT H, GARCIA-PEREZ M, CHAALA A, CAO N Z, ROY C. Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue properties of the char and activated char products[J]. Carbon, 2001, 39(6): 815-825.

    11. [11]

      [11] 武宏香, 李海滨, 赵増立. 煤与生物质热重分析及动力学研究[J]. 燃料化学学报, 2009, 37(5): 538-545. (WU Hong-xiang, LI Hai-bin, ZHAO Zeng-li. Thermogravimetric analysis and pyrolysis kinetic study on coal/biomass blends[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 538-545.)

    12. [12]

      [12] 胡荣祖. 热分析动力学 [M]. 2版.北京: 科学出版社, 2008. (HU Rong-zu. Kinetics of thermal analysis [M]. 2nd ed. Beijing: Science Press, 2008.)

    13. [13]

      [13] 周利民, 王一平, 黄群武, 蔡俊青. 煤/塑料共热解的热重分析及动力学研究[J]. 燃烧科学与技术, 2008, 14(2): 132-136. (ZHOU Li-min, WANG Yi-ping, HUANG Qun-wu, CAI Jun-qing. Thermogravimetric analysis and kinetics of coal/plastic co-pyrolysis[J]. Journal of Combustion Science and Technology, 2008, 14(2): 132-1369.)

    14. [14]

      [14] 陈吟颖. 煤与生物质共热解试验研究[D]. 保定: 华北电力大学, 2007. (CHEN Yin-ying. An experiment study on the co-pyrolysis of coal and biomass[D]. Baoding: North China Electric Power University, 2007.)

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    3. [3]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    6. [6]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    7. [7]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    8. [8]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    9. [9]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(0)
  • Abstract views(747)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return