Citation: TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub- and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 60-66. shu

Mechanism of ketones formation from cellulose liquefaction in sub- and supercritical ethanol

  • Corresponding author: XIE Xin-an, 
  • Received Date: 7 August 2012
    Available Online: 8 October 2012

    Fund Project: 国家自然科学基金(21176097) (21176097) 广东省科技计划国际合作(2009B050700037)。 (2009B050700037)

  • Cornstalk cellulose was liquefied in sub- and supercritical ethanol using an autoclave at 320℃ for 60 min. Effects of ethanol dosages on ketones formation from cellulose liquefaction were investigated. The yield of ketones was 1.25% in the absence of ethanol and then increased to 18.38% while adding 160 mL ethanol. Ethanol favored the formation of ketones from cellulose liquefaction. The liquid products at different ethanol dosages were analyzed by FT-IR and GC/MS. The results were shown as follows: (1) Cellulose was converted to active cellulose which was transformed into aliphatic ketones such as 4-hydroxy-4-methyl-2-pentanone by dehydration, decomposition, ring-opening reactions, isomerization and aldol condensation. (2) The alicyclic ketones (cyclopentenone) was formed by the cleavage of C-O-C and C-C bonds of the active cellulose under the effects of ethanol free radicals. Aromatic ketones (2-(formyloxy)-1-phenyl ethanone) were generated by cyclopentenone reaction with intermediates. (3) Aromatic ketones were decomposed to carboxylic acids and small molecule ketones under ethanol free radicals. According to the above results, the reaction network of ketones formed from cellulose in sub- and supercritical ethanol was proposed.
  • 加载中
    1. [1]

      [1] 谢文, 袁兴中, 曾光明, 佟婧怡, 李辉. 催化剂对亚临界水中生物质液化行为的影响[J]. 资源科学, 2008, 30(1): 129-133. (XIE Wen, YUAN Xing-zhong, ZENG Guang-ming, TONG Jing-yi, LI Hui. Effects of catalysts on biomass liquefaction in subcritical water[J]. Resources Science, 2008, 30(1): 129-133.)

    2. [2]

      [2] 曹洪涛. 生物质在亚/超临界水条件下液化研究[D]. 长沙: 湖南大学环境科学与工程学院, 2008. (CAO Hong-tao. The research on the liquefaction of biomass in sub- and supercritical water[D]. Changsha: Hunan University, 2008.)

    3. [3]

      [3] 常胜, 赵增立, 张伟, 郑安庆, 吴文强, 李海滨. 不同种类生物油化学组成结构的对比研究[J]. 燃料化学学报, 2011, 39(10): 746-753. (CHANG Sheng, ZHAO Zeng-li, ZHANG Wei, ZHENG An-qing, WU Wen-qiang, LI Hai-bin. Comparison of chemical composition and structure of different kinds of bio-oils[J]. Journal of Fuel Chemistry and Technology, 2011, 39(10): 746-753.)

    4. [4]

      [4] DEMIRBAS A. Mechanism of liquefaction and pyrolysis reactions of biomass[J]. Energy Convers Manage, 2000, 41(6): 633-646.

    5. [5]

      [5] DEMIRBAS A. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomss samples via pyrolysis[J]. Fuel Process Technol, 2007, 88(6): 591-597.

    6. [6]

      [6] 邵千钧, 彭锦星, 修树东, 文先红. 竹子在超临界甲醇中的热解油产物分析[J]. 太阳能学报, 2007, 28(9): 984-987. (SHAO Qian-jun, PENG Jin-xing, XIU Shu-dong, WEN Xian-hong. Analysis of oil products by pyrolysis of bamboo in supercritical methanol[J]. Acta Energiae Solaris Sinica, 2007, 28(9): 984-987.)

    7. [7]

      [7] 彭锦星, 邵千钧, 陈丰农, 陈奋学, 袁伯增. 基于超临界乙醇的竹子与聚乙烯共液化研究[J]. 太阳能学报, 2009, 30(8): 1139-1144. (PENG Jin-xing, SHAO Qian-jun, CHEN Feng-nong, CHEN Fen-xue, YUAN Bo-zen. Experimental study on co-liquefaction of bamboo and PE in supercritical ethanol[J]. Acta Energiae Solaris Sinica, 2009, 30(8): 1139-1144.)

    8. [8]

      [8] 郑朝阳, 解新安, 陶红秀, 郑璐丝, 李雁. 亚/超临界乙醇液化秸秆纤维素解聚反应研究与机理初探[J].燃料化学学报, 2012, 40(5): 526-532. (ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub- and supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 526-532.)

    9. [9]

      [9] LI J, KAZAKOV A, DRYER F L. Experimental and numerical studies of ethanol decomposition reactions[J]. J Phys Chem A, 2004, 108(38): 7671-7680

    10. [10]

      [10] 曹洪涛, 袁兴中, 曾光明, 佟婧怡, 李辉华. 超/亚临界水条件下生物质和塑料的共液化[J]. 林产化学与工业, 2009, 29(1): 95-99. (CAO Hong-tao, YUAN Xing-zhong, ZENG Guang-ming, TONG Jing-yi, LI Hui, WANG Li-hua. Co-liquefaction of biomass with plastic in sub- and supercritical water[J]. Chemistry and Industry of Forest Products, 2009, 29(1): 95-99.)

    11. [11]

      [11] WANG G, LI W, LI B-Q, CHEN H-K, BAI J. Direct liquefaction of sawdust under syngas with and without catalyst[J]. Chem Eng Process: Process intensification, 2007, 46(3):187-192.

    12. [12]

      [12] SUN P-Q, HENG M-X, SUN S-H, CHEN J-W. Analysis of liquid and solid products from liquefaction of paulownia[J]. Energy Convers Manage, 2011, 52(2): 924-933.

    13. [13]

      [13] LU Q, YANG X-C, DONG C-Q, ZHANG Z-F, ZHANG X-M, ZHU X-F. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis, 2011, 92(2): 430-438.

    14. [14]

      [14] DEMIRBAS A. Mechanism of liquefaction and pyrolysis reactions of biomass[J]. Energy Convers Manage, 2000, 41(6): 633-646.

    15. [15]

      [15] 龙玉峰. 麦草/聚酯混合超临界乙醇液化及其机理的研究[D]. 江苏: 江南大学, 2009. (LONG Yu-feng. Study on liquefaction mechanism and liquefaction of wheat straw mixed with polyester in supercritical ethanol[D]. Jiangsu: Jiangnan University, 2009.)

    16. [16]

      [16] 李辉, 袁兴中, 曾光明, 佟婧怡, 谢文. 混合溶剂对稻草亚/超临界液化行为影响初探[J]. 农业工程学报, 2008, 24(5): 200-203. (LI Hui, YUAN Xing-zhong, ZENG Guang-ming, TONG Jing-yi, XIE Wen. Effect of mixed solvent on the sub- and supercritical liquefaction of agricultural waste[J]. Transactions of the CSAE, 2008, 24(5): 200-203.)

    17. [17]

      [17] LIU Z-G, ZHANG F-S. Effect of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J]. Energy Convers Manage, 2008, 49(12): 3498-3504.

    18. [18]

      [18] 谭洪.生物质热裂解机理实验研究[D]. 浙江: 浙江大学,2005. (TAN Hong. Mechanism study of biomass pyrolysis[D]. Zhejiang: Zhejiang University, 2005.)

    19. [19]

      [19] 黄金保, 刘朝, 魏顺安, 黄晓露, 李豪杰. 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报, 2011, 39(8): 590-594. (HUANG Jin-bao, LIU Chao, WEI Shun-an, HUANG Xiao-lu, LI Hao-jie. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 590-594.)

    20. [20]

      [20] SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresour Technol, 2009, 100(24): 6496-6504.

    21. [21]

      [21] 耿中锋. 纤维素热裂解机理的理论和实验研究[D]. 天津: 天津大学, 2010. (GENG Zhong-feng. Theoretical and experimental study on mechanism of cellulose pyrolysis[D]. Tianjin: Tianjin University, 2010.)

    22. [22]

      [22] HUANG H-J, YUAN X-Z, ZENG G-M, WANG J-Y, LI H, ZHOU C-F, PEI X-K, YOU Q, CHEN L. Thermalchemical liquefaction characteristics of microalgae in sub- and supercritical ethanol[J]. Fuel Process Technol, 2011, 92(1): 147-153.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(0)
  • Abstract views(401)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return