Citation: ZHAO Bing, ZHOU Zhi-jie, DING Lu, YU Guang-suo. Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(1): 40-45. shu

Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis

  • Corresponding author: ZHOU Zhi-jie, 
  • Received Date: 13 July 2012
    Available Online: 27 September 2012

    Fund Project: 国家重点基础研究发展规划(973计划, 2010CB227000) (973计划, 2010CB227000) 国家高技术研究发展计划(863计划, 2011AA050106)。 (863计划, 2011AA050106)

  • To investigate the changes in the structure of petroleum coke and coal after rapid pyrolysis under the condition similar to the practical coal gasifier, two kinds of petroleum cokes and one bituminous coal were pyrolyzed in a drop tube furnace at 800~1 400℃. The structure of petroleum coke and coal were characterized by using surface area porosity analyzer and XRD (X-ray diffraction) analyzer, the CO2 gasification reactivity of samples was examined by TGA (thermogravimetric analyzer). The result shows that the pore in petroleum coke is mainly micropore compared with coal; with the increase of pyrolysis temperature, the micropore surface area of petroleum coke and coal increases first and then decreases gradually. Rapid pyrolysis lowers the graphitization degree of petroleum coke and coal. The changes in the carbon crystallite structure for petroleum coke are mainly observed in the average stacking height, while the changes in the carbon crystallite structure for coal is manifested in the value of 2θ002, interlayer spacing and average stacking height. Although the gasification reactivity changing tendency of petroleum coke and coal with the increase of pyrolysis temperature is different, the gasification reactivity is closely related to the carbon crystallite structure.
  • 加载中
    1. [1]

      [1] NAKAMURA D. Global refining capacity increases slightly in 2006[J]. Oil Gas J,2006,104(47): 56-62.

    2. [2]

      [2] 王玉章, 申海平, 刘自宾. 延迟焦化石油焦及应用[J]. 炼油技术与工程,2008,38(2): 25-30. (WANG Yu-zhang,SHEN Hai-ping,LIU Zi-bin. Coke of delayed coking and its application[J]. Petroleum Refinery Engineering, 2008,38(2):25-30.)

    3. [3]

      [3] MILENKOVA K S, BORREGO A G, ALVAREZ D, XIBERTA J, MENENDEZ R. Devolatilisation behaviour of petroleum coke under pulverised fuel combustion conditions [J]. Fuel, 2003, 82(15/17): 1883-1891.

    4. [4]

      [4] HAENEL M W. Recent progress in coal structure research [J]. Fuel. 1992, 71(11): 1211-1223.

    5. [5]

      [5] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国刚. 石油焦水蒸气气化反应特性[J]. 燃料化学学报, 2003, 31(3): 204-209. (LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian,SUN Guo-gang. Steam gasification characteristics of petroleum coke[J]. Joural of Fuel Chemistry and Technology, 2003, 31(3): 204-209. )

    6. [6]

      [6] 许桂英, 孙国刚. 生物质与石油焦共气化特性的研究[J]. 燃料化学学报, 2011,39(6): 438-453. (XU Gui-ying, SUN Guo-gang. Study on characterisitics of co-gasification of biomass and petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 438-453.)

    7. [7]

      [7] 吴诗勇, 吴幼青, 顾菁, 张晓, 高晋生. 高温煅烧条件下石油焦和沥青焦的物理结构及其CO2气化特性[J].石油学报(石油加工), 2009, 25(2): 258-265. (WU Shi-yong, WU You-qing, GU Jing,ZHANG Xiao,GAO Jin-sheng. Physical structures and CO2 gasification characristics of petroleum coke at condition of high temperature calcination[J]. Acta Petrolei Sinica (Petroleum Processing Section),2009,25(2): 258-265. )

    8. [8]

      [8] 唐黎华, 陈冬霞, 朱学栋, 吴勇强, 倪燕慧, 朱子彬. 石油焦高温气化反应性[J]. 燃料化学学报, 2005, 33(6): 32-36. (TANG Li-hua,CHEN Dong-xia,ZHU Xue-dong,WU Yong-qiang,NI Yan-hui,ZHU Zi-bi. Gasification reactivity of petroleum coke at high temperature [J]. Journal of Fuel Chemistry and Technology,2005,33(6): 32-36.)

    9. [9]

      [9] 刘鑫, 张保申, 周志杰, 许建良, 王辅臣. 高温热处理对石油焦结构及气化活性的影响[J]. 石油学报(石油加工)2011, 27(1): 132-137. (LIU Xin, ZHANG Baoshen, ZHOU Zhijie, XU Jianliang, WANG Fuchen. Structure changes and gasification activity of petroleum coke after heat treatment[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(1): 132-137.)

    10. [10]

      [10] LEGIN-KOLAR M, RADENOVIC' A, UGARKOVIC' D. Changes in structural parameters of different cokes during heat treatment to 2400℃[J]. Fuel, 1999, 78(13): 1599-1605.

    11. [11]

      [11] 周军, 张海, 吕俊福, 岳光溪. 高温下热解温度对煤焦孔隙结构的影响[J]. 燃料化学学报, 2007, 35(2): 155-159. (ZHOU Jun, ZHANG Hai, LU Jun-fu, YUE Guang-xi. Effect of pyrolysis temperature on porous structure of anthracite chars produced at high temperatures [J]. Journal of Fuel Chemistry and Technology. 2007, 35(2): 155-159.)

    12. [12]

      [12] 唐黎华, 吴勇强, 朱学栋, 朱子彬. 高温下制焦温度对煤焦气化活性的影响[J]. 燃料化学学报, 2002, 30(1): 16-20. (TANG Li-hua, WU Yong-qiang, ZHU Xue-dong, ZHU Zi-bin. Effect on char making temperature on char gasification activity in higher temperature[J]. Journal of Fuel Chemisttry and Technology, 2002, 30(1): 16-20.)

    13. [13]

      [13] LU L, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4): 869-876.

    14. [14]

      [14] 常海州, 蔡雪梅, 李改仙, 白官, 吕秀清. 不同还原程度煤显微组分堆垛结构表征[J]. 山西大学学报(自然科学版), 2008,31(2): 223-227. (CHANG Hai-zhou, CAI Xue-mei, LI Gai-xian, BAI Guan, LV Xiu-qing. Characterization for the stacking structure of coal macerals with different type reductivity[J]. Journal of Shanxi University(Nat.Sci.Ed), 2008, 31(2): 223-227.)

  • 加载中
    1. [1]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

Metrics
  • PDF Downloads(0)
  • Abstract views(552)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return