Citation:
LI Zhen-gang, GUO Zhan-cheng, TANG Hui-qing. Mechanism and kinetic characteristics of pulverized coal combustion in two phase flow[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(1): 33-39.
-
The combustion reaction mechanism and kinetic characteristics of pulverized anthracite coal in two phase flow were studied by micro fluidized bed kinetic analyzer, and compared with those by thermogravimetry method. The results show that the combustion reaction mechanism of pulverized coal and the composition of combustion gas product change when the temperature exceeds 850℃. When the flow rate exceeds 0.10 m/s, the effect of gas diffusion is eliminated basically, and the combustion reaction rate of pulverized coal is mainly controlled by the interface reaction. The combustion reaction rate of pulverized coal increases in a power function form with oxygen partial pressure, and the influence of oxygen partial pressure on the static combustion is more remarkable. The apparent activation energy of pulverized coal combustion in two phase flow decreases by 49 kJ/mol compared with that of static combustion, and the interfacial chemical reaction resistance of pulverized coal combustion in two phase flow is also much smaller than the results by thermogravimetry method at the same temperature.
-
-
-
[1]
[1] LI Z, ZHANG D, MA L, LOGAN W, NI W. The necessity of and policy suggestions for implementing a limited number of large scale, fully integrated CCS demonstrations in China[J]. Energy Policy, 2011, 39(9): 5347-5355.
-
[2]
[2] 巢清尘, 陈文颖. 碳捕获和存储技术综述及对我国的影响[J]. 地球科学进展, 2006, 21(3): 291-298. (CHAO Qing-chen, CHEN Wen-ying. The summery of carbon capture and storage technology and its impact on China[J]. Advances in Earth Science, 2006, 21(3): 291-298.)
-
[3]
[3] FAVRE E, BOUNACEUR R, ROIZARD D. A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture[J]. Sep Purif Technol, 2009, 68(1): 30-36.
-
[4]
[4] 薛庆国, 韩毅华, 王静松, 孔令坛. 结合CCS的炉顶煤气循环—氧气鼓风高炉CO2减排分析[J]. 钢铁, 2011, 46(8): 1-6. (XUE Qing-guo, HAN Yi-hua, WANG Jing-song, KONG Ling-tan. Analysis of CO2 emission reduction in top gas recycling—oxygen blast furnace combine with CCS[J]. Iron and Steel, 2011, 46(8): 1-6.)
-
[5]
[5] QI C-L, ZHANG J-L, LIN X-H, LIU Q-Y, WANG X-L. Investigation on pulverized coal combustion behavior by non-isothermic integral thermogravimetry method[J]. J Iron Steel Int, 2011, 18(8): 1-8.
-
[6]
[6] KIZGUT S, YILMAZ S. Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis[J]. Fuel Process Technol, 2003, 85(1/2): 103-111.
-
[7]
[7] DAMARTZIS T, IOANNIDIS G, ZABANIOTOU A. Simulating the behavior of a wire mesh reactor for olive kernel fast pyrolysis[J]. Chem Eng J, 2008, 136(2/3): 320-330.
-
[8]
[8] 张军, 汉春利, 王夕华, 徐益谦. 煤显微组分富集物燃烧特性滴管炉试验研究[J]. 燃烧科学与技术, 2002, 8(5): 403-406. (ZHANG Jun, HAN Chun-li, WANG Xi-hua, XU Yi-qian. Experimental study of drop-tube furnace on combustion characteristics of maceral concentrates[J]. Journal of Combustion Science and Technology, 2002, 8(5): 403-406.)
-
[9]
[9] CARD J B A, JONES A R. Drop tube furnace study of coal combustion and unburned carbon content using optical techniques[J]. Combust Flame, 1995, 101(4): 539-547.
-
[10]
[10] 余剑, 朱剑虹, 岳君容, 孙立鑫, 刘新华, 许光文. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60(10): 2669-2674. (YU Jian, ZHU Jian-hong, YUE Jun-rong, SUN Li-xin, LIU Xin-hua, XU Guang-wen. Development and application of micro kinetic analyzer for fluidized bed gas-solid reaction[J]. Journal of Chemical Industry and Engineering(China), 2009, 60(10): 2669-2674.)
-
[11]
[11] 刘联胜. 燃烧理论与技术[M]. 北京: 化学工业出版社, 2008. (LIU Lian-sheng. Combustion theory and technology[M]. Beijing: Chemical Industry Press, 2008.)
-
[12]
[12] 余剑, 朱剑虹, 郭凤, 段正康, 刘云义, 许光文. 生物质在微型流化床中热解动力学与机理[J]. 燃料化学学报, 2010, 38(6): 666-672. (YU Jian, ZHU Jian-hong, GUO Feng, DUAN Zheng-kang, LIU Yun-yi, XU Guang-wen. Reaction kinetics and mechanism of biomass pyrolysis in a micro fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 666-672.)
-
[13]
[13] 张保生, 刘建忠, 周俊虎, 冯展管, 岑可法.利用Popescu法对煤燃烧反应机理的研究[J]. 中国机电工程学报, 2006, 26(15): 68-72. (ZHANG Bao-sheng, LIU Jian-zhong, ZHOU Jun-hu, FENG Zhan-guan, CEN Ke-fa. Popescu method for combustion kinetic mechanisms of coals [J]. Proceedings of the CSEE, 2006, 26(15): 68-72.)
-
[14]
[14] SMITH I W. The combustion rates of coal chars: a review [C]//19th Symposium on Combustion, 1982: 1045-1065.
-
[15]
[15] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity [M]. Beijing: Science Press, 2002.)
-
[16]
[16] 胡荣祖, 史启祯. 热分析动力学[M]. 2版. 北京: 科学出版社, 2001. (HU Rong-zu, SHI Qi-zhen. Thermal analysis kinetics[M]. 2nd ed. Beijing: Science Press, 2001.)
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[3]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[6]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[12]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[18]
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
-
[19]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[20]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(685)
- HTML views(193)