Citation:
YANG Xin, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Slagging characteristics of fly ash from anthracite gasification in fluidized bed[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(1): 1-8.
-
An experimental procedure was tested for studying the sintering and fusion characteristics of fly ash from anthracite fluidized bed gasification at the temperature approaching the ash deformation temperature (DT), and the slagging characteristic was investigated. The quantitative analysis on the composition of crystalline mineral matter and the amorphous phases in the thermal treated ash was carried out using X-ray diffraction analysis (XRD). Experimental results show that the slagging tendency of fly ash is related to the transformation of minerals. AFTs of fly ash are lower than those of original coal due to higher contents of Fe, Ca, and Mg. The formation of melting matrix causes a liquid-phase sintering at 100~200℃ below the DT, which leads to a shrinkage deformation and clinkering due to the formation and transformation of feldspar that plays a 'glue’ role in sintering. A great amount of Ca and all of Fe are found in the glass phase, which improves the amorphous phase in concentration. These fluxing components in the glass phase that do not crystalize during thermal treatment can promote the densification process of sintering and the slagging or agglomeration tendencies.
-
-
-
[1]
[1] 谢克昌. 煤化工发展与规划[M]. 北京: 化学工业出版社, 2005: 11-12. (XIE Ke-chang. Focus on coal chemical engineering[M]. Beijing: Chemical Industry Press, 2005:11-12.)
-
[2]
[2] 黄戒介, 房倚天, 王洋. 现代煤气化技术的开发与发展[J]. 燃料化学学报, 2002, 30(5): 385-391. (HUANG Jie-jie, FANG Yi-tian, WANG Yang. Development and progress of modern coal gasification technology [J]. Journal of Fuel Chemistry and Technology, 2002, 30(5): 385-391.)
-
[3]
[3] 屈利娟. 流化床煤气化技术的研究进展[J]. 煤炭转化,2007, 30(2): 81-85. (QU Li-juan. Progress of research in the fluidized bed coal gasification technology[J]. Coal Conversion, 2007, 30(2): 81-85.)
-
[4]
[4] 陈晓辉, 贾亚龙, 冯杰, 房倚天, 李文英. 流化床-气流床耦合反应器中煤气化特性[J]. 化工学报, 2011, 62(12): 3484-3491. (CHEN Xiao-hui, JIA Ya-long, FENG Jie, FANG Yi-tian, LI Wen-ying. Coal gasification performance in fluidized bed-entrained flow integrated reactor[J]. Journal of Chemical Industry and Engineering(China), 2011, 62(12): 3484-3491.)
-
[5]
[5] WU J, FANG Y, PENG H, WANG Y. A new integrated approach of coal gasification: The concept and preliminary experimental results[J]. Fuel Process Technol, 2004, 86(3): 261-266.
-
[6]
[6] BARTELS M, LIN W G, NIJENHUIS J, KAPTEIJIN F, van OMMEN J R. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention[J]. Prog Energy Combust Sci, 2008, 34(5): 633-666.
-
[7]
[7] SKRIFVARS B J, HUPA M, HILTUNEN M. Sintering of ash during fluidized bed combustion[J]. Ind Eng Chem Res, 1992, 31(4): 1026-1030.
-
[8]
[8] SKRIFVARS B J, HUPA M, BACKMAN R, HILTUNEN M. Sintering mechanisms of FBC ashes[J]. Fuel, 1994, 73(2): 171-176.
-
[9]
[9] 果世驹.粉末烧结理论[M]. 北京: 冶金工业出版社, 2007: 301-303. (GUO Shi-ju. Powder sintering mechanisms[M]. Beijing: Metallurgical Industry Press, 2007: 301-303.)
-
[10]
[10] LLORENTE F M J, GARCA C J E. Comparing methods for predicting the sintering of biomass ash in combustion[J]. Fuel, 2005, 84(14/15): 1893-1900.
-
[11]
[11] 乌晓江, 张忠孝, 朴桂林, 小林信介, 森滋腾, 板谷羲纪. 高灰熔点煤加压气流床气化特性[J]. 燃烧科学与技术, 2009, 15(2): 182-187. (WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI Nobusuke, MORI Shigekatsu, ITATYA Yoshinori. Gasification characteristics of coal with high ash fusin temperature in lab-scale down-flow gasifier[J]. Journal of Combustion Science and Technology, 2009, 15(2): 182-187.)
-
[12]
[12] 占旺兵, 梁钦锋, 董志, 刘海峰, 于广锁. 水冷壁气流床气化炉灰渣结构分析[J]. 燃料化学学报,2010, 38(1): 6-11. (ZHAN Wang-bing, LIANG Qin-feng, DONG Zhi, LIU Hai-feng,YU Guang-suo. Aanlysis of slag structure of entrained-flow gasifier with membrane water wall[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 6-11.)
-
[13]
[13] 李风海, 黄戒介, 房倚天, 王洋. 晋城无烟煤流化床气化结渣机理的探索[J]. 太原理工大学学报,2010, 41(5): 666-669. (LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Exploration on slagging mechanism of Jincheng anthracite during fluidized bed gasification[J]. Journal of Taiyuan University of Technology, 2010, 41(5): 666-669.)
-
[14]
[14] 郭崇涛. 煤化学[M]. 北京: 化学工业出版社, 1992: 37-38. (GUO Chong-tao. Coal chemistry[M]. Beijing: Chemical Industry Press, 1992: 37-38.)
-
[15]
[15] GILBE C, LINDSTRM, BACKMAN R, SAMUELSSON R, BURVALL J, HMAN M. Predicting slagging tendencies for biomass pellets fired in residential appliances: A comparison of different prediction methods[J]. Energy Fuels, 2008, 22(6): 3680-3686.
-
[16]
[16] WARD C R, TAYLOR J C, MATULIS C E, DALE L S. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction[J]. Int J Coal Geol, 2001, 46(2): 67-82.
-
[17]
[17] WARD C R, FRENCH D. Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry[J]. Fuel, 2006, 85(16): 2268-2277.
-
[18]
[18] MATJIE R H, LI Z, WARD C R, FRENCH D. Chemical composition of glass and crystalline phases in coarse coal gasification ash[J]. Fuel, 2008, 87(6): 857-869.
-
[19]
[19] 于敦喜, 徐明厚, 姚洪, 刘小伟. 燃煤残灰颗粒物中主量元素的粒径分布[J]. 科学通报, 2008, 53(24): 3039-3044. (YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei. Particle size distribution of major elements in coal-fired residual ash[J]. Chinese Science Bulletin, 2008, 53(24): 3039-3044.)
-
[20]
[20] LI F, HUANG J, FANG Y, WANG Y. Formation mechanism of slag during fluid-bed gasification of lignite[J]. Energy Fuels, 2011, 25(1): 273-280.
-
[21]
[21] HUFFMAN G P, HUGGINS F E, DUNMYRE G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981, 60(7): 585-597.
-
[22]
[22] BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4/5): 583-591.
-
[23]
[23] 刘文胜, 杨建国, 翁善勇, 赵虹. 配煤灰渣中结晶矿物质在高温中转变的定量分析及其对结渣的影响[J]. 燃料化学学报, 2012, 40(1): 15-20. (LIU Wen-sheng, YANG Jian-guo, WENG Shan-yong, ZHAO Hong. Quantitative analysis of minerals of blended coal ash at high temperature and its influence on slagging[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 15-20.)
-
[24]
[24] NOWOK J W, BENSON S A, JONES M L, KALMANOVITCH D P. Sintering behaviour and strength development in various coal ashes[J]. Fuel, 1990, 69(8): 1020-1028.
-
[1]
-
-
-
[1]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[2]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[3]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[4]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[5]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[6]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[7]
Tiancheng Yang , Yang Yang , Chunhua Qu , Rui Chu , Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015
-
[8]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[9]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[10]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[11]
Cheng Zheng , Shiying Zheng , Yanping Zhang , Shoutian Zheng , Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131
-
[12]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
-
[13]
Naiying Fan , Chuanli Qin , Guo Zhang , Bin Wang , Yan Wang , Bing Zheng , Yichun Qu , Zhiyao Sun , Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061
-
[14]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[15]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[16]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[17]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[18]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[19]
Jiangjuan Shao , Xuan Li , Jingdan Weng , Xiaolei Chen , Fei Xu , Yulu Ma , Nianguang Li , Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079
-
[20]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(914)
- HTML views(111)