Citation: LIU Hong-tao, HAN Kui-hua, LU Chun-mei. Direct sulfation kinetics of limestone modified by wood vinegar under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1505-1511. shu

Direct sulfation kinetics of limestone modified by wood vinegar under O2/CO2 atmosphere

  • Corresponding author: HAN Kui-hua,  LU Chun-mei, 
  • Received Date: 13 March 2012
    Available Online: 25 May 2012

    Fund Project: 山东省自然科学基金(ZR2009FQ016) (ZR2009FQ016) 山东大学自主创新基金(2010TS020) (2010TS020) 山东大学研究生自主创新基金(yzc11058)。 (yzc11058)

  • The direct sulfation reaction of limestone modified by wood vinegar, a kind of waste liquid, was investigated by thermogravimetic analysis method under O2/CO2 atmosphere. The results show that the direct sulfation performance of limestone can be effectively improved by wood vinegar modifying in the experimental temperature range (1 023~1 173 K). The phase composition analysis measured by XRD shows that the major composition in the modified limestone is hydration calcium acetate. The structure of limestone modified is much looser than that of original limestone, which is conducive to the direct sulfation reaction. The direct sulfation rate constant (ks) and product-layer diffusivity (Deff) in Arrhenius expressions were calculated according to the shrinking unreacted core model. The kinetic calculation results show that the diffusion impact of limestone modified by wood vinegar on the direct sulfation process is less than that of original limestone, which means that the limestone modified by wood vinegar has a lower diffusion resistance.
  • 加载中
    1. [1]

      [1] XIONG J, ZHAO H, ZHENG C, LIU Z, ZENG L, LIU H, QIU J. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China[J]. Fuel, 2009, 88(6): 1135-1142.

    2. [2]

      [2] 段伦博, 赵长遂, 李庆钊, 李英杰, 陈晓平. O2/CO2气氛下煤焦燃烧实验研究[J]. 燃料化学学报, 2009, 37(6):654-658. (DUAN Lun-bo, ZHAO Chang-sui, LI Qing-zhao, LI Ying-jie, CHEN Xiao-ping. Experimental investigation on coal and char combustion in O2/CO2 mixture[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6): 654-658.)

    3. [3]

      [3] 韩奎华, 路春美, 侯庆伟, 刘志超, 马传利, 高山. 煤在不同O2/CO2气氛下燃烧硫析出特性研究[J]. 燃料化学学报, 2004, 32(5): 517-521. (HAN Kui-hua, LU Chun-mei, HOU Qing-wei, LIU Zhi-chao, MA Chuan-li, GAO Shan. The characteristics of sulfur release during coal combustion in the mixed-CO2 gas with different oxygen concentrations[J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 517-521.)

    4. [4]

      [4] 毛玉如, 方梦祥, 骆仲泱, 吴学成, 岑可法. O2/CO2气氛下石灰石煅烧与硫化反应研究[J].燃料化学学报,2004,32(3): 323-328. (MAO Yu-ru, FANG Meng-xiang, LUO Zhong-yang, WU Xue-cheng, CEN Ke-fa. Calcination and desulfurization of limestone under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2004, 32(3): 323-328.)

    5. [5]

      [5] JIN H, GAO L, HAN W, HONG H. Prospect options of CO2 capture technology suitable for China[J]. Energy, 2010, 35(11): 4499-4506.

    6. [6]

      [6] PAK P S, LEE Y D, AHN K Y. Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission[J]. Energy, 2010, 35(8): 3230-3238.

    7. [7]

      [7] OKAZAKI K. Sustainable energy technologies[M]. Holland: Springer Netherlands, 2008, 207-225.

    8. [8]

      [8] TAN Y, CROISET E, DOUGLAS M A, THAMBIMUTHU K V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel, 2006, 85(4): 507-512.

    9. [9]

      [9] HU G, DAM-JOHANSEN K, WEDEL S, HANSEN J P. Review of the direct sulfation reaction of limestone[J]. Prog Energy Combust Sci, 2006, 32(4): 386-407.

    10. [10]

      [10] FUERTES A B, FERNANDEZ M J. The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples[J]. Thermochim Acta, 1996, 276: 257-269.

    11. [11]

      [11] HU G, DAM-JOHANSEN K, WEDEL S. Enhancement of the direct sulfation of limestone by alkali metal salts, calcium chloride, and hydrogen chloride[J]. Ind Eng Chem Res, 2007, 46(16): 5295-5303.

    12. [12]

      [12] CHEN C, ZHUANG Y, WANG C. Enhancement of direct sulfation of limestone by Na2CO3 addition[J]. Fuel Process Technol, 2009, 90(7/8): 889-894.

    13. [13]

      [13] 武卫芳, 赵长遂, 李英杰, 段伦博, 陈惠超. O2/CO2气氛下醋酸调质石灰石直接硫化实验研究[J].中国电机工程学报, 2010, 30(26):44-49. (WU Wei-fang, ZHAO Chang-sui, LI Ying-jie, DUAN Lun-bo, CHEN Hui-chao. Experimental investigation on direct sulphation characteristics of limestone modified by acetic acid solution under O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2010, 30(26): 44-49.)

    14. [14]

      [14] 王海英, 杨国亭, 周 丹. 木醋液研究现状及其综合利用[J]. 东北林业大学学报, 2004, 32(5): 55-57. (WANG Hai-ying, YANG Guo-ting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. Journal of Northeast Forestry University, 2004, 32(5): 55-57.)

    15. [15]

      [15] YATAGAI M, NISHIMOTO M, HORI K, OHIRA T, SHIBATA A. Termiticidal activity of wood vinegar, its components and their homologues [J]. J Wood Sci, 2002, 48(4): 338-342.

    16. [16]

      [16] 陈甘棠. 化学反应工程[M]. 2版. 杭州: 化学工业出版社, 1990: 171-173. (CHEN Gan-tang. Chemical reaction engineering[M]. 2nd ed. Hangzhou: Chemical Industry Press, 1990: 171-173.)

    17. [17]

      [17] 肖海平, 李惊涛, 孙保民. 有机钙助燃特性研究[J]. 华北电力大学学报, 2008, 35(1): 81-85. (XIAO Hai-ping, LI Jing-tao, SUN Bao-min. Research on combustion-supporting characteristic of organic calcium[J]. Journal of North China Electric Power University, 2008, 35(1): 81-85.)

    18. [18]

      [18] HAJALIGOL M R, LONGWELL J P, SAROFIM A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Ind Eng Chem Res, 1988, 27(12): 2203-2210.

    19. [19]

      [19] 陈传敏, 赵长遂, 赵毅. 石灰石直接硫化反应动力学研究[J]. 燃烧科学与技术, 2009, 15(5): 388-392. (CHEN Chuan-min, ZHAO Chang-sui, ZHAO Yi. Direct sulfation reaction kinetics of limestone[J]. Journal of Combustion Science and Technology, 2009, 15(5): 388-392.)

    20. [20]

      [20] SZEKELY J, EVANS J W, SOHN H Y. Gas-solid reactions[M]. New York: Academic Press, 1976: 65-175.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(0)
  • Abstract views(833)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return