Citation:
LIU Hong-tao, HAN Kui-hua, LU Chun-mei. Direct sulfation kinetics of limestone modified by wood vinegar under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(12): 1505-1511.
-
The direct sulfation reaction of limestone modified by wood vinegar, a kind of waste liquid, was investigated by thermogravimetic analysis method under O2/CO2 atmosphere. The results show that the direct sulfation performance of limestone can be effectively improved by wood vinegar modifying in the experimental temperature range (1 023~1 173 K). The phase composition analysis measured by XRD shows that the major composition in the modified limestone is hydration calcium acetate. The structure of limestone modified is much looser than that of original limestone, which is conducive to the direct sulfation reaction. The direct sulfation rate constant (ks) and product-layer diffusivity (Deff) in Arrhenius expressions were calculated according to the shrinking unreacted core model. The kinetic calculation results show that the diffusion impact of limestone modified by wood vinegar on the direct sulfation process is less than that of original limestone, which means that the limestone modified by wood vinegar has a lower diffusion resistance.
-
Keywords:
- O2/CO2,
- wood vinegar,
- modify,
- limestone,
- direct sulfation,
- kinetic,
- shrinking unreacted core model
-
-
-
[1]
[1] XIONG J, ZHAO H, ZHENG C, LIU Z, ZENG L, LIU H, QIU J. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China[J]. Fuel, 2009, 88(6): 1135-1142.
-
[2]
[2] 段伦博, 赵长遂, 李庆钊, 李英杰, 陈晓平. O2/CO2气氛下煤焦燃烧实验研究[J]. 燃料化学学报, 2009, 37(6):654-658. (DUAN Lun-bo, ZHAO Chang-sui, LI Qing-zhao, LI Ying-jie, CHEN Xiao-ping. Experimental investigation on coal and char combustion in O2/CO2 mixture[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6): 654-658.)
-
[3]
[3] 韩奎华, 路春美, 侯庆伟, 刘志超, 马传利, 高山. 煤在不同O2/CO2气氛下燃烧硫析出特性研究[J]. 燃料化学学报, 2004, 32(5): 517-521. (HAN Kui-hua, LU Chun-mei, HOU Qing-wei, LIU Zhi-chao, MA Chuan-li, GAO Shan. The characteristics of sulfur release during coal combustion in the mixed-CO2 gas with different oxygen concentrations[J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 517-521.)
-
[4]
[4] 毛玉如, 方梦祥, 骆仲泱, 吴学成, 岑可法. O2/CO2气氛下石灰石煅烧与硫化反应研究[J].燃料化学学报,2004,32(3): 323-328. (MAO Yu-ru, FANG Meng-xiang, LUO Zhong-yang, WU Xue-cheng, CEN Ke-fa. Calcination and desulfurization of limestone under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2004, 32(3): 323-328.)
-
[5]
[5] JIN H, GAO L, HAN W, HONG H. Prospect options of CO2 capture technology suitable for China[J]. Energy, 2010, 35(11): 4499-4506.
-
[6]
[6] PAK P S, LEE Y D, AHN K Y. Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission[J]. Energy, 2010, 35(8): 3230-3238.
-
[7]
[7] OKAZAKI K. Sustainable energy technologies[M]. Holland: Springer Netherlands, 2008, 207-225.
-
[8]
[8] TAN Y, CROISET E, DOUGLAS M A, THAMBIMUTHU K V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel, 2006, 85(4): 507-512.
-
[9]
[9] HU G, DAM-JOHANSEN K, WEDEL S, HANSEN J P. Review of the direct sulfation reaction of limestone[J]. Prog Energy Combust Sci, 2006, 32(4): 386-407.
-
[10]
[10] FUERTES A B, FERNANDEZ M J. The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples[J]. Thermochim Acta, 1996, 276: 257-269.
-
[11]
[11] HU G, DAM-JOHANSEN K, WEDEL S. Enhancement of the direct sulfation of limestone by alkali metal salts, calcium chloride, and hydrogen chloride[J]. Ind Eng Chem Res, 2007, 46(16): 5295-5303.
-
[12]
[12] CHEN C, ZHUANG Y, WANG C. Enhancement of direct sulfation of limestone by Na2CO3 addition[J]. Fuel Process Technol, 2009, 90(7/8): 889-894.
-
[13]
[13] 武卫芳, 赵长遂, 李英杰, 段伦博, 陈惠超. O2/CO2气氛下醋酸调质石灰石直接硫化实验研究[J].中国电机工程学报, 2010, 30(26):44-49. (WU Wei-fang, ZHAO Chang-sui, LI Ying-jie, DUAN Lun-bo, CHEN Hui-chao. Experimental investigation on direct sulphation characteristics of limestone modified by acetic acid solution under O2/CO2 atmosphere[J]. Proceedings of the CSEE, 2010, 30(26): 44-49.)
-
[14]
[14] 王海英, 杨国亭, 周 丹. 木醋液研究现状及其综合利用[J]. 东北林业大学学报, 2004, 32(5): 55-57. (WANG Hai-ying, YANG Guo-ting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. Journal of Northeast Forestry University, 2004, 32(5): 55-57.)
-
[15]
[15] YATAGAI M, NISHIMOTO M, HORI K, OHIRA T, SHIBATA A. Termiticidal activity of wood vinegar, its components and their homologues [J]. J Wood Sci, 2002, 48(4): 338-342.
-
[16]
[16] 陈甘棠. 化学反应工程[M]. 2版. 杭州: 化学工业出版社, 1990: 171-173. (CHEN Gan-tang. Chemical reaction engineering[M]. 2nd ed. Hangzhou: Chemical Industry Press, 1990: 171-173.)
-
[17]
[17] 肖海平, 李惊涛, 孙保民. 有机钙助燃特性研究[J]. 华北电力大学学报, 2008, 35(1): 81-85. (XIAO Hai-ping, LI Jing-tao, SUN Bao-min. Research on combustion-supporting characteristic of organic calcium[J]. Journal of North China Electric Power University, 2008, 35(1): 81-85.)
-
[18]
[18] HAJALIGOL M R, LONGWELL J P, SAROFIM A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Ind Eng Chem Res, 1988, 27(12): 2203-2210.
-
[19]
[19] 陈传敏, 赵长遂, 赵毅. 石灰石直接硫化反应动力学研究[J]. 燃烧科学与技术, 2009, 15(5): 388-392. (CHEN Chuan-min, ZHAO Chang-sui, ZHAO Yi. Direct sulfation reaction kinetics of limestone[J]. Journal of Combustion Science and Technology, 2009, 15(5): 388-392.)
-
[20]
[20] SZEKELY J, EVANS J W, SOHN H Y. Gas-solid reactions[M]. New York: Academic Press, 1976: 65-175.
-
[1]
-
-
-
[1]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[4]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[7]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[8]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[9]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[10]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[11]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[15]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[16]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[17]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[18]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[19]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[20]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(863)
- HTML views(112)