Citation: WANG Yong-gang, ZHANG Hai-yong, ZHANG Pei-zhong, XU De-ping, ZHAO Kuan, WANG Fang-jie. Hydroprocessing of low temperature coal tar on NiW/γ-Al2O3catalyst[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1492-1497. shu

Hydroprocessing of low temperature coal tar on NiW/γ-Al2O3catalyst

  • Corresponding author: WANG Yong-gang, 
  • Received Date: 10 April 2012
    Available Online: 5 June 2012

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA05A203) (863计划, 2011AA05A203) 中国矿业大学(北京)2010年中央高校基本科研业务费专项基金(研究生科研专项)资助(2010YH01)。 (北京)2010年中央高校基本科研业务费专项基金(研究生科研专项)资助(2010YH01)

  • γ-Al2O3 supported catalysts with different Ni/W atomic ratios for the hydroprocessing of low temperature coal tar (LTCT) were prepared and characterized by BET, XRD, H2-TPR and TG analysis. The hydroprocessing of <350 ℃ fraction of LTCT was carried out in a fixed-bed reactor. The product distribution and composition were analyzed by distillation, GC/MS, fluorescent indicator adsorption and elementary analysis. The results show that NiO and WO3 are evenly distributed on the support surface; and low-loading NiO is difficult to reduce since the strong force is formed with the support surface. The phenol conversion, the selectivity of kerosene fraction and the content of naphthene and hydro-aromatic in the product are the highest at a Ni/W atomic ratio of 0.38, while the activities of HDS and HDN and the H/C atomic ratio in the product are also the best. It indicates that the NiW/γ-Al2O3 catalyst with an optimum Ni/W atomic ratio of 0.38 is appropriate for the hydroprocessing of LTCT.
  • 加载中
    1. [1]

      [1] 肖瑞华. 煤焦油化工学[M]. 北京: 冶金工业出版社, 2002. (XIAO Rui-hua. Chemical engineering of coal tar[M]. Beijing: Metallurgical Industry Press, 2002.)

    2. [2]

      [2] 舒歌平, 史士东, 金嘉璐. 气化焦油加氢制汽油、柴油研究[J]. 煤化工, 1998, (2): 34-39. (SHU Ge-ping, SHI Shi-dong, JIN Jia-lu. Study on hydrogenation of gasification tar to produce gasoline and diesel oil[J]. Coal Chemical Industry, 1998, (2): 34-39.)

    3. [3]

      [3] 黄谦昌. 煤气化焦油加工制取汽油和柴油的研究[J]. 煤炭转化, 1995, 18(4): 75-83. (HUANG Qian-chang. Study on making gasoline and diesel fuel from coal-gasified tar[J]. Coal Conversion, 1995, 18(4): 75-83.)

    4. [4]

      [4] 何国峰, 陈贵峰, 关北峰, 史士东. 低温热解焦油馏分加氢精制的研究[J]. 煤炭转化, 1998, 21(1): 49-53. (HE Guo-feng, CHEN Gui-feng, GUAN Bei-feng, SHI Shi-dong. Study on hydrogen refining coal tar fractions distilled[J]. Coal Conversion, 1998, 21(1): 49-53.

    5. [5]

      [5] 燕京, 吕才山, 刘爱华, 达建文. 高温煤焦油加氢制取汽油和柴油[J]. 石油化工, 2006, 35(1): 33-36. (YAN Jing, LV Cai-shan, LIU Ai-hua, DA Jian-wen. Production of gasoline and diesel oil by hydrogenation of high temperature coal tar[J]. Petrolchemical Technology, 2006, 35(1): 33-36.)

    6. [6]

      [6] 付晓东. 煤气化副产品焦油的加氢转化[J]. 化学工程师, 2005, (4): 53-56. (FU Xiao-dong. Hydrogenization transform for coal tar’s[J]. Chemical Engineer, 2005, (4): 53-56.)

    7. [7]

      [7] 吕子胜, 王守峰. 用低温煤焦油生产柴油的研究[J]. 燃料与化工, 2002, 33(2): 81-82. (LV Zi-sheng, WANG Shou-feng. Production of diesel from low temperature coal tar[J]. Fuel & Chemical Processes, 2002, 33(2): 81-82.)

    8. [8]

      [8] 屈明达, 鄂忠明. 煤焦油的加氢处理[J]. 化工技术经济, 2005, 23(6): 49-53. (QU Ming-da, E Zhong-ming. Coal tar oil hydrogenation[J]. Chemical Techno-Economics, 2005, 23(6): 49-53.)

    9. [9]

      [9] 李增文. 煤焦油加氢工艺技术[J]. 化学工程师, 2009, (10): 57-62. (LI Zeng-wen. Hydrogenation technology of coal tar[J]. Chemical Engineer, 2009, (10): 57-62.)

    10. [10]

      [10] 陈松, 许杰, 方向晨. 煤焦油联合加氢裂化处理工艺及其专用催化剂[J]. 现代化工, 2009, 29(3): 64-69. (CHEN Song, XU Jie, FANG Xiang-chen. United hydrocracking process for treating coal tar oil and its special catalyst[J]. Modern Chemical Industry, 2009, 29(3): 64-69.)

    11. [11]

      [11] BALSTER L M, CORPORAN E, DeWITT M J, EDWARDS J T, ERVIN J S, GRAHAM J L, LEE S Y, PAL S, PHELPS D K, RUDNICK L R, SANTORO R J, SCHOBERT H H, SHAFER L M, STRIEBICH R C, WEST Z J, WILSON G R, WOODWARD R, ZABARNICK S. Development of an advanced, thermally stable, coal-based jet fuel [J]. Fuel Process Technol, 2008, 89(4):364-378.

    12. [12]

      [12] ESER S, SONG C, COPENHAVER R, PERISON J, SCHOBERT H. Production of jet fuels from coal-derived liquids.DOE Report DOE/PC/90014, Washington DC, 1988: 1-3.

    13. [13]

      [13] SONG C, LAI W C, SCHOBERT H H. Hydrogen transferring pyrolysis of long-chain alkanes and thermal stability improvement of jet fuels by hydrogen donors [J]. Ind Eng Chem Res, 1994, 33(3): 548-557.

    14. [14]

      [14] YOON E M, SELVARAJ L, SONG C, STALLMAN J B, COLEMAN M M. High-temperature stabilizers for jet fuels and similar hydrocarbon mixtures: 1 Comparative studies of hydrogen donors[J]. Energy Fuels, 1996, 10(3): 806-811.

    15. [15]

      [15] YOON E M, SELVARAJ L, ESER S, COLEMAN M M. High-temperature stabilizers for jet fuels and similar hydrocarbon mixtures: 2 Kinetic studies [J]. Energy Fuels, 1996, 10(3): 812-815.

    16. [16]

      [16] STROHM J J, BUTNARK S, KEYSER T L, ANDRSEN J M, BADGER M W, SCHOBERT H H, SONG C. The use of coal pyrolysis products for the development of thermally stable jet fuels[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 2004, 47(1): 177-178.

    17. [17]

      [17] SCHOBERT H H, BADGER M W, SANTORO R J. Progress toward coal-based JP-900 [J]. Prepr Pap Am Chem Soc Div Pet Chem, 2002, 47(3): 192-194.

    18. [18]

      [18] GRANGE P, VANHAEREN X. Hydrotreating catalysts, an old story with new challenges [J]. Catal Today, 1997, 36(4):375-391.

    19. [19]

      [19] DING L, ZHENG Y, ZHANG Z, RING Z, CHEN J. Hydrotreating of light cycle oil using WNi catalysts containing hydrothermally and chemically treated zeolite Y [J]. Catal Today, 2007, 125(3/4): 229-238.

    20. [20]

      [20] 黄华, 尹笃林, 文建军, 张茂昆, 徐斌. Ni含量对镍催化剂芳烃加氢抗硫性能的影响[J]. 工业催化, 2005, 13(1): 13-16. (HUANG Hua, YIN Zhu-lin, WEN Jian-jun, ZHANG Mao-kun, XU Bin. Effect of nickel content on sulfur tolerance of nickel-based catalysts for aromatic hydrogenation[J]. Industry Catalysis, 2005, 13(1): 13-16.)

    21. [21]

      [21] ZUO D, LI D, NIE H,SHI Y, LACROIX M, VRINAT M. Acid-base properties of NiW/Al2O3 sulfided catalysts: Relationship with hydrogenation, isomerization and hydrodesulfurization reactions[J]. J Mol Catal A, 2004, 211(1/2): 179-189.

    22. [22]

      [22] ZUO D, VRINAT M, NIE H, MAUGF, SHI Y, LACROIX M, LI D. The formation of the active phases in sulfided NiW/Al2O3catalysts and their evolution during post-reduction treatment[J]. Catal Today, 2004, 93-95: 751-760.

    23. [23]

      [23] DUGULAN A I, HENSEN E J M, van VEEN J A R. Effect of pressure on the sulfidation behavior of NiW catalysts: A 182W Mössbauer spectroscopy study[J]. Catal Today, 2010, 150(3/4): 224-230.

    24. [24]

      [24] ALSOBAAI A M, ZAKARIA R, HAMEED B H. Gas oil hydrocracking on NiW/USY catalyst: Effect of tungsten and nickel loading[J]. Chem Eng J, 2007, 132(1/3): 77-83.

    25. [25]

      [25] SAHOO S K, VISWANADHAM N, RAY N, GUPTA J K, SINGH I D. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization[J]. Appl Catal A, 2001, 205(1/2):1-10.

    26. [26]

      [26] ANTUNES A P, RIBEIRO M F, SILVA J M, RIBEIRO F R, MAGNOUX P, GUISNET M. Catalytic oxidation of toluene over CuNaHY zeolites: Coke formation and removal[J]. Appl Catal B, 2001, 33(2): 149-164.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(424)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return