Citation: LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QIN Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4 (M=Al, Fe, Cr) for the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1466-1471. shu

Catalytic characteristics of spinel CuM2O4 (M=Al, Fe, Cr) for the steam reforming of methanol

  • Corresponding author: GAO Zhi-xian, 
  • Received Date: 25 April 2012
    Available Online: 29 June 2012

  • Spinel oxides of CuAl2O4, CuFe2O4 and CuCr2O4 were prepared by citrate process at 900 ℃, and their catalytic properties for methanol steam reforming was evaluated. In combination with the XRD, H2-TPR, SEM and BET data, the catalytic characteristics of spinel oxides were also discussed. The results showed that the morphology and size of the three spinel oxides were quite different and catalytic properties varied among the three spinel oxide catalysts. CuAl2O spinel showed the highest stability and lowest CO selectivity while CuFe2O4 indicated the highest CO selectivity and poor stability and CuCr2O4 encountered serious coke deposition. It has been shown, according to the long test data and results, that active Cu species were released from copper based spinel during methanol steam reforming, and their catalytic performances were influenced by both Cu sintering and coke deposition.
  • 加载中
    1. [1]

      [1] 刘俊, 雷跃荣, 陈希明, 董会宁, 孙雷. 尖晶石结构材料的最新研究进展[J]. 材料导报, 2008, 22(11): 26-29. (LIU Jun, LEI Yue-rong, CHEN Xi-ming, DONG Hui-ning, SUN Lei. Recent advancement in research on spinel structural materials[J]. Materials Review, 2008, 22(11): 26-29.)

    2. [2]

      [2] 李抗, 黄剑锋, 曹丽云, 王博, 施浙勇. 络合溶胶-凝胶法制备CuAlO2微晶及其光学性能研究[J]. 无机材料学报, 2011, 26(3): 275-280. (LI Kang, HUANG Jian-feng, CAO Li-yun, WANG Bo, SHI Zhe-yong. Preparation and optical properties of CuAlO2 microcrys-tallites by complexing Sol-Gel[J]. Journal of Inorganic Materials, 2011, 26(3): 275-280.)

    3. [3]

      [3] SEVERINO F, BRITO J L, LAINE J, FIERRO J L G, LOPEZ AGUDO A. Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts[J]. J Catal, 1998, 177(1): 82-95.

    4. [4]

      [4] TANAKA Y, UTAKA T, KIKUCHI R, TAKEGUCHI T, SASAKI K, EGUCHI K. Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide[J]. J Catal, 2003, 215(2): 271-278.

    5. [5]

      [5] FAUNGNAWAKIJ K, SHIMODA N, FUKUNAGA T, KIKUCHI R, EGUCHI K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether[J]. Appl Catal B, 2009, 92(3/4): 341-350.

    6. [6]

      [6] MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, (5): 761-764.

    7. [7]

      [7] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.

    8. [8]

      [8] KAMEOKA S, TANABE T, TSAI A P. Spinel CuFe2O4: A precursor for copper catalyst with high thermal stability and activity[J]. Catal Lett, 2005, 100(1/2): 89-93.

    9. [9]

      [9] 汤颖,邓强,路勇,何鸣元. 甲醇蒸气重整制氢反应机理研究进展[J]. 天然气化工, 2009, 34(4): 65-69,75. (TANG Ying,DENG Qiang,LU Yong,HE Ming-yuan. Progress in the investigation on mechanism of methanol steam reforming for hydrogen production[J]. Natural Gas Chemical Industry, 2009, 34(4): 65-69,75.)

    10. [10]

      [10] 张菊香,史鹏飞,张新荣,刘春涛. 燃料电池甲醇重整制氢研究进展[J]. 电池,2004,34(5): 359-361. (ZHANG Ju-xiang, SHI Peng-fei, ZHANG Xin-rong, LIU Chun-Tao. Research progress in hydrogen production from the reforming of methanol for cell fuels[J]. Battery, 2004, 34(5): 359-361.)

    11. [11]

      [11] 毛丽萍, 吕功煊. 纳米Cu/Al2O3催化剂催化甲醇水蒸气重整制氢研究[J]. 甘肃科学学报, 2009, 21(1): 77-80. (MAO Li-ping,LV Gong-xuan. Hydrogen production from methanol steam reforming over nano-Cu/A12O3 catalyst[J]. Journal of Gansu Sciences,2009, 21(1): 77-80.)

    12. [12]

      [12] 谷传涛, 李光俊, 胡蕴青, 庆绍军, 侯晓宁, 高志贤. 淀粉改性SiO2载体的预处理温度对其负载的铜基催化剂甲醇转化性能的影响[J]. 燃料化学学报, 2012, 40(11): 1328-1335. (GU Chuan-tao, LI Guang-jun, HU Yun-qing, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1328-1335.)

    13. [13]

      [13] YAHIRO H, NAKAYA K, YAMAMOTA K, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006, 7(4): 228-231.

    14. [14]

      [14] TASCA J E, QUINCOCES C E, LAVAT A, ALVAREZ A M, GONZLEZ M G. Preparation and characterization of CuFe2O4 bulk catalysts[J]. Ceram Int, 2011, 37(3): 803-812.

    15. [15]

      [15] 赵峰,刘英骏,李能,林炳雄. CuCrO2-CuCr2O4 两相共生体系的合成及其对CO-NO反应催化性能的研究[J].分子催化, 2001, 15(3): 161-164. (ZHAO Feng, LIU Ying-jun, LI Neng, LIN Bing-xiong. Preparation of Cu-Cr-O catalysts containing both CuCrO2 and CuCr2O4 phase and their catalytic activities for CO-NO reaction[J]. Journal of Molecular Catalysts (China), 2001, 15(3): 161-164.)

  • 加载中
    1. [1]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

    4. [4]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    10. [10]

      Yuming ShuHanghang LeiJiangnan HuangQing PanBaichao ZhangYixin XuYe ZhouGuorong HuYanbing CaoGuoqiang ZouWentao DengZhongdong PengHongshuai HouDi ChenXiaobo Ji . Enabling superior performance in brick-like single-crystal LiMn2O4 via BaO flux. Chinese Chemical Letters, 2025, 36(9): 110345-. doi: 10.1016/j.cclet.2024.110345

    11. [11]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    13. [13]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    19. [19]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(0)
  • Abstract views(1180)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return