Citation: LÜ Ren-qing, LIN Jin, QU Zhan-qing. Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1444-1453. shu

Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids

  • Received Date: 28 June 2012
    Available Online: 17 September 2012

  • The interactions between sulfur-containing compounds of dibenzothiophene (DBT) and dibenzothiophene sulfone (DBTO2) and ionic liquids of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]+[PF6]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were comparatively studied by using density functional theory. The most stable structures of [BMIM]+[PF6]-, [BMIM]+[PF6]--DBT, [BMIM]+[PF6]--DBTO2, [BMIM]+[BF4]-, [BMIM]+[BF4]--DBT, and [BMIM]+[BF4]--DBTO2 systems were obtained by natural bond orbitals (NBO) and atoms in molecules (AIM) analyses. The results indicated that DBT and [BMIM] rings of [BMIM]+[PF6]-/[BMIM]+[BF4]- are parallel to each other. There is a strong π-π interaction between them in terms of NBO and AIM analyses. The H1' and H9' involved F…H hydrogen bonding interactions may favor the formation of π-π stacking interactions. The DBTO2 preferentially locates near the C2-H2 and methyl group of [BMIM]+ to form O…H interactions. The predicted geometries and interaction energies imply the preferential adsorption of DBTO2 on [BMIM]+[PF6]-/[BMIM]+[BF4]-. The [BMIM]+[PF6]-/[BF4]- have better extracting ability to remove DBTO2 than DBT, possibly due to the larger polarity of DBTO2 and stronger interactions between [BMIM]+[PF6]-/[BF4]- and DBTO2.
  • 加载中
    1. [1]

      [1] BOSMANN A, DATSEVICH L, JESS A, LAUTER A, SCHMITZ C, WASSEERSCHEID P. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001, 23(23): 2494-2495.

    2. [2]

      [2] LO W-H, YANG H-Y, WEI G-T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003, 5(5): 639-642.

    3. [3]

      [3] WANG J-L, ZHAO D-S, ZHOU E-P, DONG Z. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007, 35(3): 293-296.

    4. [4]

      [4] ZHANG C, WANG F, PAN X-Y, LIU X-Q. Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. J Fuel Chem Technol, 2011, 39(9): 689-693.

    5. [5]

      [5] ANANTHARAJ R, BANERJEE T. Phase behavior of 1-ethyl-3-methylimidazolium thiocyanate ionic liquid with catalytic deactivated compounds and water at several temperatures: Experiments and theoretical predictions[J]. Int J Chem Eng, 2011, 2011(1):1-13.

    6. [6]

      [6] KUMAR A A P, BANERJEE T. Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 1-8.

    7. [7]

      [7] ANANTHARAJ R, BANERJEE T. Liquid-liquid equilibria for quaternary systems of imidazolium based ionic liquid + thiophene + pyridine + iso-octane at 298.15 K: Experiments and quantum chemical predictions[J]. Fluid Phase Equilib, 2011, 312(1): 20-30.

    8. [8]

      [8] SANTIAGO R S, SANTOS G R, AZNAR M. UNIQUAC correlation of liquid-liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 54-61.

    9. [9]

      [9] HANKE C G, JOHANSSON A, HARPER J B, LYNDEN-BELL R M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study[J]. Chem Phys Lett, 2003, 374(1/2): 85-90.

    10. [10]

      [10] KEDRA-KROLIK K, FABRICE M, JAUBERT J. Extraction of thiophene or pyridine from n-heptane using ionic liquids, gasoline and diesel desulfurization[J]. Ind Eng Chem Res, 2011, 50(4): 2296-2306.

    11. [11]

      [11] ANANTHARAJ R, BANERJEE T. Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids[J]. AIChE J, 2011, 57(3): 749-764.

    12. [12]

      [12] LU R, QU Z, YU H, WANG F, WANG S. Comparative study on interactions between ionic liquids and pyridine/hexane[J]. Chem Phys Lett, 2012, 532(4): 13-18.

    13. [13]

      [13] DONG K, ZHANG S, WANG D, YAO X. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A, 2006, 110(31): 9775-9782.

    14. [14]

      [14] HEIMER N E, del SESTO R E, MENG Z, WILKES J S, CARPER W R. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids[J]. J Mol Liq, 2006, 124(1/3): 84-95.

    15. [15]

      [15] BHARGAVA B L, BALASUBRAMANIAN S. Insights into the structure and dynamics of a room-temperature ionic liquid: Ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture[J]. J Phys Chem B, 2007, 111(17): 4477-4487.

    16. [16]

      [16] MORROW T I, MAGINN E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J Phys Chem B, 2002, 106(49): 12807-12813.

    17. [17]

      [17] KATSYUBA S A, DYSON P J, VANDYUKOVA E E, CHERNOVA A V, VIDIS A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate[J]. Helv Chim Acta, 2004, 87(10): 2556-2565.

    18. [18]

      [18] MICAELO N M, BAPTISTA A M, SOARES C M. Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field[J]. J Phys Chem B, 2006, 110(29): 14444-14451.

    19. [19]

      [19] TALATY E R, RAJA S, STORHAUG V J, DOLLE A, CARPER W R. Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids[J]. J Phys Chem B, 2004, 108(35): 13177-13184.

    20. [20]

      [20] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244-13249.

    21. [21]

      [21] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1): 508-517.

    22. [22]

      [22] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18): 7756-7764.

    23. [23]

      [23] CASTELLANO O, GIMON R, SOSCUN H. Theoretical study of the σ-π and π-π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin-asphaltene stability in crude oil[J]. Energy Fuels, 2011, 25(6): 2526-2541.

    24. [24]

      [24] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem Rev, 1988, 83(6): 899-926.

    25. [25]

      [25] BIEGLER-KONIG F, SCHONBOHM J. Update of the AIM2000 program for atoms in molecules[J]. J Comput Chem, 2002, 23(15): 1489-1494.

    26. [26]

      [26] BIEGLER-KONIG F, SCHONBOHM J, BAYLES D. AIM2000 - A program to analyze and visualize atoms in molecules[J]. J Comput Chem, 2001, 22(5): 545-559.

    27. [27]

      [27] INADA Y, ORITA H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets[J]. J Comput Chem, 2008, 29(2): 225-232.

    28. [28]

      [28] ROZAS I, ALKORTA I, ELGUERO J. Bifurcated hydrogen bonds: three-centered interactions[J]. J Phys Chem A, 1988, 102(48): 9925-9932.

    29. [29]

      [29] PADIYAR G S, SESHADRI T P. Trifurcated (four-center) hydrogen bond in solid state crystal structure of 5'-amino-5'-deoxyadenosine p-toluenesulfonate[J]. Nucleos Nucleot, 1996, 15(4): 857-865.

    30. [30]

      [30] SINNOKROT M O, VALEEV E F, SHERRILL C D. Estimates of the ab initio limit for π-π interactions: The benzene dimmer[J]. J Am Chem Soc, 2002, 124(36): 10887-10893.

    31. [31]

      [31] HUNTER C A, SANDERS J K M. The nature of π-π interactions[J]. J Am Chem Soc, 1990, 112(14): 5525-5534.

    32. [32]

      [32] DESIRAJU G R. Hydrogen bridges in crystal engineering: Interactions without borders[J]. Acc Chem Res, 2002, 35(7): 565-573.

    33. [33]

      [33] BADER R F W. A quantum theory of molecular structure and its applications[J]. Chem Rev, 1991, 91(5): 893-928.

    34. [34]

      [34] CHECINSKA L, GRABOWSKI S J, MALECKA M. An analysis of bifurcated H-bonds: Crystal and molecular structures of O,O-diphenyl 1-(3-phenylthioureido) pentanephosphonate and O,O-diphenyl 1-(3-phenylthioureido) butanephosphonate[J]. J Phys Org Chem, 2003, 16(4): 213-219.

    35. [35]

      [35] ESPINOSA E, SOUHASSOU M, LACHEKAR H, LECOMTE C. Topological analysis of the electron density in hydrogen bonds[J]. Acta Cryst, 1999, B55(4): 563-574.

    36. [36]

      [36] NETZEL J, van SMAALEN S. Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)[J]. Acta Cryst, 2009, B56(5): 624-638.

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(419)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return