Citation:
LÜ Ren-qing, LIN Jin, QU Zhan-qing. Theoretical study on the interactions between dibenzothiophene/dibenzothiophene sulfone and ionic liquids[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(12): 1444-1453.
-
The interactions between sulfur-containing compounds of dibenzothiophene (DBT) and dibenzothiophene sulfone (DBTO2) and ionic liquids of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]+[PF6]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were comparatively studied by using density functional theory. The most stable structures of [BMIM]+[PF6]-, [BMIM]+[PF6]--DBT, [BMIM]+[PF6]--DBTO2, [BMIM]+[BF4]-, [BMIM]+[BF4]--DBT, and [BMIM]+[BF4]--DBTO2 systems were obtained by natural bond orbitals (NBO) and atoms in molecules (AIM) analyses. The results indicated that DBT and [BMIM] rings of [BMIM]+[PF6]-/[BMIM]+[BF4]- are parallel to each other. There is a strong π-π interaction between them in terms of NBO and AIM analyses. The H1' and H9' involved F…H hydrogen bonding interactions may favor the formation of π-π stacking interactions. The DBTO2 preferentially locates near the C2-H2 and methyl group of [BMIM]+ to form O…H interactions. The predicted geometries and interaction energies imply the preferential adsorption of DBTO2 on [BMIM]+[PF6]-/[BMIM]+[BF4]-. The [BMIM]+[PF6]-/[BF4]- have better extracting ability to remove DBTO2 than DBT, possibly due to the larger polarity of DBTO2 and stronger interactions between [BMIM]+[PF6]-/[BF4]- and DBTO2.
-
-
-
[1]
[1] BOSMANN A, DATSEVICH L, JESS A, LAUTER A, SCHMITZ C, WASSEERSCHEID P. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001, 23(23): 2494-2495.
-
[2]
[2] LO W-H, YANG H-Y, WEI G-T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003, 5(5): 639-642.
-
[3]
[3] WANG J-L, ZHAO D-S, ZHOU E-P, DONG Z. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007, 35(3): 293-296.
-
[4]
[4] ZHANG C, WANG F, PAN X-Y, LIU X-Q. Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. J Fuel Chem Technol, 2011, 39(9): 689-693.
-
[5]
[5] ANANTHARAJ R, BANERJEE T. Phase behavior of 1-ethyl-3-methylimidazolium thiocyanate ionic liquid with catalytic deactivated compounds and water at several temperatures: Experiments and theoretical predictions[J]. Int J Chem Eng, 2011, 2011(1):1-13.
-
[6]
[6] KUMAR A A P, BANERJEE T. Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 1-8.
-
[7]
[7] ANANTHARAJ R, BANERJEE T. Liquid-liquid equilibria for quaternary systems of imidazolium based ionic liquid + thiophene + pyridine + iso-octane at 298.15 K: Experiments and quantum chemical predictions[J]. Fluid Phase Equilib, 2011, 312(1): 20-30.
-
[8]
[8] SANTIAGO R S, SANTOS G R, AZNAR M. UNIQUAC correlation of liquid-liquid equilibrium in systems involving ionic liquids: the DFT-PCM approach[J]. Fluid Phase Equilib, 2009, 278(1/2): 54-61.
-
[9]
[9] HANKE C G, JOHANSSON A, HARPER J B, LYNDEN-BELL R M. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids? A simulation study[J]. Chem Phys Lett, 2003, 374(1/2): 85-90.
-
[10]
[10] KEDRA-KROLIK K, FABRICE M, JAUBERT J. Extraction of thiophene or pyridine from n-heptane using ionic liquids, gasoline and diesel desulfurization[J]. Ind Eng Chem Res, 2011, 50(4): 2296-2306.
-
[11]
[11] ANANTHARAJ R, BANERJEE T. Quantum chemical studies on the simultaneous interaction of thiophene and pyridine with ionic liquids[J]. AIChE J, 2011, 57(3): 749-764.
-
[12]
[12] LU R, QU Z, YU H, WANG F, WANG S. Comparative study on interactions between ionic liquids and pyridine/hexane[J]. Chem Phys Lett, 2012, 532(4): 13-18.
-
[13]
[13] DONG K, ZHANG S, WANG D, YAO X. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A, 2006, 110(31): 9775-9782.
-
[14]
[14] HEIMER N E, del SESTO R E, MENG Z, WILKES J S, CARPER W R. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids[J]. J Mol Liq, 2006, 124(1/3): 84-95.
-
[15]
[15] BHARGAVA B L, BALASUBRAMANIAN S. Insights into the structure and dynamics of a room-temperature ionic liquid: Ab initio molecular dynamics simulation studies of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and the [bmim][PF6]-CO2 mixture[J]. J Phys Chem B, 2007, 111(17): 4477-4487.
-
[16]
[16] MORROW T I, MAGINN E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J Phys Chem B, 2002, 106(49): 12807-12813.
-
[17]
[17] KATSYUBA S A, DYSON P J, VANDYUKOVA E E, CHERNOVA A V, VIDIS A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-1H-imidazolium tetrafluoroborate[J]. Helv Chim Acta, 2004, 87(10): 2556-2565.
-
[18]
[18] MICAELO N M, BAPTISTA A M, SOARES C M. Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field[J]. J Phys Chem B, 2006, 110(29): 14444-14451.
-
[19]
[19] TALATY E R, RAJA S, STORHAUG V J, DOLLE A, CARPER W R. Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids[J]. J Phys Chem B, 2004, 108(35): 13177-13184.
-
[20]
[20] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244-13249.
-
[21]
[21] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1): 508-517.
-
[22]
[22] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18): 7756-7764.
-
[23]
[23] CASTELLANO O, GIMON R, SOSCUN H. Theoretical study of the σ-π and π-π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin-asphaltene stability in crude oil[J]. Energy Fuels, 2011, 25(6): 2526-2541.
-
[24]
[24] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem Rev, 1988, 83(6): 899-926.
-
[25]
[25] BIEGLER-KONIG F, SCHONBOHM J. Update of the AIM2000 program for atoms in molecules[J]. J Comput Chem, 2002, 23(15): 1489-1494.
-
[26]
[26] BIEGLER-KONIG F, SCHONBOHM J, BAYLES D. AIM2000 - A program to analyze and visualize atoms in molecules[J]. J Comput Chem, 2001, 22(5): 545-559.
-
[27]
[27] INADA Y, ORITA H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets[J]. J Comput Chem, 2008, 29(2): 225-232.
-
[28]
[28] ROZAS I, ALKORTA I, ELGUERO J. Bifurcated hydrogen bonds: three-centered interactions[J]. J Phys Chem A, 1988, 102(48): 9925-9932.
-
[29]
[29] PADIYAR G S, SESHADRI T P. Trifurcated (four-center) hydrogen bond in solid state crystal structure of 5'-amino-5'-deoxyadenosine p-toluenesulfonate[J]. Nucleos Nucleot, 1996, 15(4): 857-865.
-
[30]
[30] SINNOKROT M O, VALEEV E F, SHERRILL C D. Estimates of the ab initio limit for π-π interactions: The benzene dimmer[J]. J Am Chem Soc, 2002, 124(36): 10887-10893.
-
[31]
[31] HUNTER C A, SANDERS J K M. The nature of π-π interactions[J]. J Am Chem Soc, 1990, 112(14): 5525-5534.
-
[32]
[32] DESIRAJU G R. Hydrogen bridges in crystal engineering: Interactions without borders[J]. Acc Chem Res, 2002, 35(7): 565-573.
-
[33]
[33] BADER R F W. A quantum theory of molecular structure and its applications[J]. Chem Rev, 1991, 91(5): 893-928.
-
[34]
[34] CHECINSKA L, GRABOWSKI S J, MALECKA M. An analysis of bifurcated H-bonds: Crystal and molecular structures of O,O-diphenyl 1-(3-phenylthioureido) pentanephosphonate and O,O-diphenyl 1-(3-phenylthioureido) butanephosphonate[J]. J Phys Org Chem, 2003, 16(4): 213-219.
-
[35]
[35] ESPINOSA E, SOUHASSOU M, LACHEKAR H, LECOMTE C. Topological analysis of the electron density in hydrogen bonds[J]. Acta Cryst, 1999, B55(4): 563-574.
-
[36]
[36] NETZEL J, van SMAALEN S. Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM)[J]. Acta Cryst, 2009, B56(5): 624-638.
-
[1]
-
-
-
[1]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[4]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[5]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[6]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[7]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[8]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[9]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[10]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[11]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[12]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[13]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[14]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[15]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[16]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[17]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[18]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[19]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[20]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(419)
- HTML views(29)