Citation: Mostafa Feyzi, Ali A Mirzaei. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1435-1443. shu

Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis

  • Corresponding author: Mostafa Feyzi, 
  • Received Date: 18 July 2012
    Available Online: 5 September 2012

  • The 15%(Co-Mn)/TiO2,(Co/Mn=1/6) catalyst was prepared using fusion procedure and studied for the conversion of synthesis gas to C2~4 olefins. The effects of calcination conditions and operation conditions such as the H2/CO molar feed ratio at different temperatures, gas hourly space velocity (GHSV) and total reaction pressure on the catalytic performance of catalyst were investigated. The stability of the catalyst during 150 h at optimal operation conditions (t=250 ℃ H2/CO=2/1, GHSV=1 500 h-1 and p=0.3 MPa) has been investigated. It is found that this catalyst is high stable for production C2~4 olefins. Characterizations of both precursors and calcined catalysts by powder X-ray diffraction, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurement and thermal analysis methods such as thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) show that the different preparation method influences the catalyst precursor structure and morphology.
  • 加载中
    1. [1]

      [1] CHANENCHUK C A, YATES I C, SATTERFIELD C N. The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst[J]. Energy Fuels, 1991, 5(6): 847-855.

    2. [2]

      [2] HAGHSHENAS FARD M, MALEKI L, KHOSHNODI M, MIRZAEI A. Hydrogenation of CO over a cobalt/cerium oxide catalyst for production of lower olefin[J]. Iranian J Sci Technol, Trans B, 2004, 28: 689-693.

    3. [3]

      [3] PARK C, BAKER R T K. Carbon deposition on iron-nickel during interaction with ethylene-carbon monoxide-hydrogen mixtures[J]. J Catal, 2000, 190(1): 104-117.

    4. [4]

      [4] KLBEL H, TILLMETZ D K. Hydrocarbons and oxygen-containing compounds and catalysts therefore: US, 4177203[P].1979-12-04.

    5. [5]

      [5] GOTTSCHALK F M, COPPERTHWAITE R G, van der RIET M, HUTCHINGS G. Cobalt/manganese oxide water gas shift catalysts: I Competition between carbon monoxide hydrogenation and water gas shift activity[J]. Appl Catal, 1988, 38(1): 103-108.

    6. [6]

      [6] TAUSTER S J, FUNG S C, GARDEN R. Strong metal- support interactions group 8 noble metals supported on TiO2[J]. J Am Chem Soc, 1978, 100(1): 170-175.

    7. [7]

      [7] MA X, SUN Q, YING W, FANG D. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2009, 18(2): 232-236.

    8. [8]

      [8] COPPERWAITE R. G, HUTCHINGS G. J, van der RIET M, WOODHOUSE J. Carbon monoxide hydrogenation using manganese oxide-based catalysts: Effect of operating conditions on alkene selectivity[J]. Int Eng Chem Res, 1987, 26(5): 869-874.

    9. [9]

      [9] COLLEY S, COPPERTHWAITE R G, HUTCHINGS G J, van der RIET M. Carbon monoxide hydrogenation using cobalt manganese oxide catalysts: Initial catalyst optimization studies[J]. Ind Eng Chem Res, 1988, 27(1): 1339-1344.

    10. [10]

      [10] Van der RIET M, HUTCHINGS G J, COPPERTHWAITE R G. Selective formation of C3 hydrocarbons from CO+H2 using cobalt manganese oxide catalysts [J]. J Chem Soc Chem Commun, 1986, 98: 798-799.

    11. [11]

      [11] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(1): 227-241.

    12. [12]

      [12] REUEL R C, BARTOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. Catal, 1984, 85(2): 78-88.

    13. [13]

      [13] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium: Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224.

    14. [14]

      [14] MIRZAEI A A, FAIZI M, HABIBPOUR R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A, 2006, 306: 98-107.

    15. [15]

      [15] FEYZI M, IRANDOUST M, MIRZAEI A A. Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer–Tropsch synthesis[J]. Fuel Process Technol, 2011, 92(5): 1136-1143.

    16. [16]

      [16] BARRAULT J, FORQUY C, PERRICHON V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl Catal, 1983, 5(1): 119-125.

    17. [17]

      [17] BUKUR D B, LANG X, AKGERMAN A, FENG Z. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1997, 36(7): 2580-2587.

    18. [18]

      [18] KRISHNA K R, BELL A T. Estimates of the rate coefficients for chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO2[J]. J Catal, 1993, 139(1): 104-118.

    19. [19]

      [19] ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332.

    20. [20]

      [20] SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(1): 185-207.

    21. [21]

      [21] MORALES F, GIJZEMAN O L J, de GROOT F M F, WECKHUYSEN B M. Manganese promotion in cobalt-based Fischer-Tropsch catalysis[M].Stud Surf Sci Catal, 2004, 147: 271-276.

    22. [22]

      [22] MORALES F, de GROOT F M F, GLATZEL P, KLEIMENOV E, BLUHM H, HAVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. In situ soft X-ray absorption of Co/Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. J Phys Chem B, 2004, 108(41): 16201-16207.

    23. [23]

      [23] MORALES F, GRANDJEAN D, de GROOT F M F, STEPHAN O, WECKHUYSEN B M. Combined EXAFS and STEM-EELS study of the electronic state and location of Mn as promoter in Co-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2005, 7: 568-572.

    24. [24]

      [24] GRIBVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts[M]. Stud Surf Sci Catal, 2002, 144: 609-616.

    25. [25]

      [25] MADON R J, REYES S C, IGLESIA E. Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis[J]. J Phys Chem, 1991, 95(20): 7795-7804.

    26. [26]

      [26] GRIBVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts[M]. Stud Surf Sci Catal, 2002, 144: 609-616.

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    2. [2]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    3. [3]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    4. [4]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    5. [5]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    8. [8]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    11. [11]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    12. [12]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    13. [13]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

Metrics
  • PDF Downloads(0)
  • Abstract views(343)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return