Citation: CHEN Ying, ZHOU Dong-liang, CHEN Dong, JI Bin. Deacidification of high-acid biodiesel feedstock by esterification with glycerol[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1429-1434. shu

Deacidification of high-acid biodiesel feedstock by esterification with glycerol

  • Corresponding author: CHEN Ying, 
  • Received Date: 10 March 2012
    Available Online: 31 May 2012

    Fund Project: 浙江省自然科学基金(Y12B060012) (Y12B060012)

  • Solid acid catalyst SO42-/ZrO2 modified by doping Al was prepared by co-precipitation-impregnation method and characterized by infrared spectrum. The activities of fresh, reused and regenerated catalysts were investigated by esterification with glycerol for deacidification of high-acid biodiesel feedstock. The activity of the catalyst SO42-/ZrO2 modified by 1% Al2O3, whatever the catalyst was in fresh or reused or regenerated condition, was better than that of non-modified SO42-/ZrO2. Al can increase the amount of SO42- on the catalyst, strengthen the combination between S and O, and decrease the loss of SO42- in the esterification process. The conversion of esterification was above 91% under the conditions of atmospheric pressure, 140 ℃ for 4 h, glycerol and fatty acid mole ratio of 6, and SO42-/ZrO2-Al2O3 catalyst dosage (catalyst/oil) of 7%.The acid value of the oil was reduced from 31 mgKOH/g to 2.8 mgKOH/g after esterification under above optimum conditions. This low-acid oil is suitable as the raw material of biodiesel.
  • 加载中
    1. [1]

      [1] CHAROENCHAITRAKOOL M, THIENMETHANGKOON J. Statistical optimization for biodiesel production from waste frying oil though two-step catalyzed process[J]. Fuel Process Technol, 2011, 92(1): 112-118.

    2. [2]

      [2] HAYYAN A, ALAM M Z, MIRGHANI M E S, KABBASHI N A, HAKIMI N I N M, SIRAN Y M, TAHIRUDDIN S. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes[J]. Bioresour Technol, 2010, 101(20): 7804-7811.

    3. [3]

      [3] WANG Y, OU S, LIU P, ZHANG Z . Preparation of biodiesel from waste cooking oil via two-step catalyzed process[J]. Energy Convers Manage, 2007, 48(1): 184-188.

    4. [4]

      [4] ZHANG J, CHEN S, YANG R, YAN Y. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst[J]. Fuel, 2010, 89(10): 2939-2944.

    5. [5]

      [5] 罗文, 李惠文, 吕鹏梅, 李连华, 王忠铭, 袁振宏. 高酸值生物柴油原料的预酯化反应装置的实验研究[J]. 太阳能学报, 2011, 32(6): 777-781. (LUO Wen, LI Hui-wen, LV Peng-mei, LI Lian-hua, WANG Zhong-ming, YUAN Zhen-hong. Study on pre-esterification reactor of waste oil with high acid value as biodiesel feedstock[J]. Acta Energiae Solaris Sinica, 2011, 32(6): 777-781.)

    6. [6]

      [6] 姜绍通, 刘新新, 张福建. 菜籽油脚制备生物柴油的原料预处理研究[J]. 中国油脂, 2010, 35(4):50-53. (JIANG Shao-tong, LIU Xin-xin, ZHANG Fu-jian. Pretreatment of rapeseed oil sediment used to prepare biodiesel[J]. China Oils and Fats, 2010, 35(4): 50-53.)

    7. [7]

      [7] 曹崇江, 刘晓庚, 周国信. 固体酸预处理高酸值油脂降低酸值[J]. 应用化学, 2008, 25(5): 613-616. (CAO Chong-jiang, LIU Xiao-geng, ZHOU Guo-xin. Esterification pretreatment of high acid value oil with solid acid catalysts[J]. Chinese Journal of Applied Chemistry, 2008, 25(5): 613-616.)

    8. [8]

      [8] 苏有勇, 吴桢芬, 杨晓京, 戈振扬. 高酸值生物柴油原料降酸的研究[J]. 中国油脂, 2007, 32(11): 52-54. (SU You-yong, WU Zhen-fen, YANG Xiao-jing, GE Zhen-yang. Study on reducing acid value of biodiesel feedstock with high acid value[J]. China Oils and Fats, 2007, 32(11): 52-54.)

    9. [9]

      [9] 曾庆梅, 韩抒, 张冬冬, 李志强, 司文攻. 高酸值米糠油酯化脱酸成生物柴油原料[J]. 农业工程学报, 2009, 25(8): 215-219. (ZENG Qing-mei, HAN Shu, ZHANG Dong-dong, LI Zhi-qiang, SI Wen-gong. Deacidification of high-acid rice bran oil by esterification for the raw material of biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 215-219.)

    10. [10]

      [10] PETCHMALA A, LAOSIRIPOJANA N, JONGSOMJIT B, GOTO M, PANPRANOT J, MEKASUWANDUMRONG O, SHOTIPRUK A. Transesterification of palm oil and esterification of palm fatty acid in near-and super-critical methanol with SO42--ZrO2 catalysts[J]. Fuel, 2010, 89(9): 2387-2392.

    11. [11]

      [11] 李文戈, 金华峰. S2O82-/ZrO2-Al2O3的制备、表征及其催化合成富马酸二甲酯[J]. 精细石油化工, 2008, 25(1): 10-14. (LI Wen-ge, JIN Hua-feng. Preparation, characterization and performance of nanosolid super acid S2O82-/ZrO2-Al2O3 for synthesis of dimethyl fumarate[J]. Speciality Petrochemicals, 2008, 25(1): 10-14 .)

    12. [12]

      [12] 宋华, 董鹏飞, 张旭. Al 含量对Pt-S2O82-/ZrO2-Al2O3型固体超强酸催化剂异构化性能的影响[J].高校化学工程学报, 2010, 31(7): 1426-1430. (SONG Hua, DONG Peng-Fei, ZHANG Xu. Effect of Al contents on the isomerization performance of solid superacid Pt-S2O82-/ZrO2-Al2O3[J]. Chemical Journal of Chinese Universities, 2010, 31(7): 1426-1430.)

    13. [13]

      [13] 菅盘铭, 徐林, 高强, 沈常美, 孙荣夫. 金属掺杂纳米固体超强酸SO42-/ZrO2的IR考察[J]. 光谱学与光谱分析[J]. 2005, 25(3): 356-359. (JIAN Pan-ming, XU Lin, GAO Qiang, SHEN Chang-mei, SUN Rong-fu. Observation of IR spectra from doped SO42-/ZrO2 nanosolid super acid[J]. Spectroscopy and Spectral Analysis, 2005, 25(3): 356-359.)

    14. [14]

      [14] 吴奇, 林晓栋, 闫俊萍, 张智敏. 介孔SO42-/ZrO2的制备、表征及性能[J]. 精细化工, 2009, 29(9): 878-918. (WU Qi, LIN Xiao-dong, YAN Jun-ping, ZHANG Zhi-min. Preparation, characterization and properties of mesostructured sulfated zirconia[J]. Fine Chemicals, 2009, 29(9): 878-918.)

    15. [15]

      [15] 王红宇, 王越敏, 李 俊. 钒改性对SO42-/ZrO2-Al2O3固体酸催化剂结构与催化性能的影响[J]. 催化学报, 2008, 29(8): 758-764. (WANG Yu-hong, WANG Yue-min, LI Jun. Effect of vanadium modification on structure and catalytic properties of SO42-/ZrO2-Al2O3 solid acid catalyst[J]. Chinese Journal of Catalyst, 2008, 29(8): 758-764.)

    16. [16]

      [16] 舒华, 郭海福, 吴文胜, 吴燕妮, 闫鹏. 新型稀土固体超强酸S2O82-/Sb2O3/La3+的制备与再生[J]. 精细石油化工, 2008, 25(5): 12-14. (SHU Hua, GUO Hai-fu, WU Wen-sheng, WU Yan-ni, YAN Peng. Studies on preparation and regeneration of the novel rare-earth solid super-acid S2O82-/Sb2O3/La3+ catalyst[J]. Speciality Petrochemicals, 2008, 25(5): 12-14.)

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(0)
  • Abstract views(491)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return