Citation:
XU Jie, LIU Xia, LI De-xia, ZHOU Zhi-jie, WANG Fu-chen, YU Guang-suo. Prediction model for flow temperature of coal ash[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(12): 1415-1421.
-
Ash flow temperature (FT) is an important index for coal gasification, determining the slagging model of coal-combustion and gasification process. On the basis of flow temperature of 181 coal ash samples, the FT prediction model associated with ash composition and acid/basic ratio was set up. The correlation coefficient is 0.934, indicating the FT prediction values is in good agreement with the experiment values. The liquidus temperature was calculated by FactSage software. The formula between FT and the liquidus temperature was established, and the correlation coefficient is 0.924.
-
-
-
[1]
[1] 芦涛, 张雷, 张晔, 丰芸, 李寒旭. 煤灰中矿物质组成对煤灰熔融温度的影响[J]. 燃料化学学报, 2010, 38(1): 23-28. (LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 23-28.)
-
[2]
[2] 龙永华, 高晋生. 煤中矿物质与气化工艺的选择[J]. 洁净煤技术, 1998, 4(3): 34-37. (LONG Yong-hua, GAO Jin-sheng. The effect of mineral matter of coal on LTS gasifying process[J]. Clean Coal Technology, 1998, 4(3): 34-37.)
-
[3]
[3] JAK E. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668.
-
[4]
[4] SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009,23(4): 1990-1997.
-
[5]
[5] 禹立坚, 黄镇宇, 程军, 潘华引, 周俊虎, 岑可法. 配煤燃烧过程中煤灰熔融性研究[J]. 燃料化学学报, 2009, 37(2): 139-144. (YU Li-jian, HUANG Zhen-yu, CHENG Jun, PAN Hua-yin, ZHOU Jun-hu, CEN Ke-fa. Study on the coal ash fusibility during blending coal combusition[J]. Journal of Fuel Chemistry and Technology, 2009, 37(2): 139-144.)
-
[6]
[6] 戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工, 2009, (4): 16-19. (DAI Ai-jun, DU Yan-xue, XIE Xin-xin. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chemical Industry, 2009, (4): 16-19.)
-
[7]
[7] 张德祥, 龙永华, 高晋生. 煤灰中矿物的化学组成与灰熔融性的关系[J]. 华东理工大学学报, 2003, 29(6): 590-594. (ZHANG De-xiang, LONG Yong-hua, GAO Jin-sheng. Relationship between the coal ash fusibility and its chemical composition[J]. Journal of East China University of Science and Technology, 2003, 29(6): 590-594.)
-
[8]
[8] 郝丽芬, 李东雄, 靳智平. 灰成分与灰熔融性关系的研究[J]. 电力学报, 2006, 21(3): 294-296. (HAO Li-fen, LI Dong-xiong, JIN Zhi-ping. The research of relationship about ash composition and ash melt[J]. Journal of Electric Power, 2006, 21(3): 294-296.)
-
[9]
[9] WINEGARTER E C, RHOLDERS B T. An empirical study of the relation of chemical properties to ash fusion temperature[J]. Trans ASME J Eng Power, 1975, 97(3): 395-401.
-
[10]
[10] SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999, 78(9): 1121-1125.
-
[11]
[11] SEGGIANI M, PANNOCCHIA G. Prediction of coal ash thermal properties using partial least-squares regression[J]. Ind Eng Chem Res, 2003, 42(20): 4919-4926.
-
[12]
[12] LOLJA S A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel, 2003, 81(17): 2257-2261.
-
[13]
[13] LOLJA S A, HAXHI H, DHIMITRI R. Ash composition of the main Albanian coals[J]. Fuel, 2000, 79(2): 207-209.
-
[14]
[14] 王敏龙, 邓蜀平, 郝栩. 配煤降低潞安煤灰熔融温度及其机理研究[J]. 煤炭转化, 2007, 30(3): 25-30 (WANG Min-long, DENG Shu-ping, HAO Xu. An experimental study of the effect of Lu'an coal blending on coal ash fusibility.) [J]. Coal Conversion, 2007, 30(3): 25-30)
-
[15]
[15] 刘新兵, 陈茺. 煤灰熔融性的研究[J]. 煤化工, 1995, 33(2): 48-53. (LIU Xin-bing, CHEN Chong. Study on coal ash fusibility[J]. Coal Chemical Industry, 1995, 33(2): 48-53.)
-
[16]
[16] VASSIEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 45(1): 27-51.
-
[17]
[17] 贾明生, 张乾熙. 影响煤灰熔融性温度的控制因素[J]. 煤化工, 2007, 35(3): 1-5. (JIA Ming-sheng, ZHANG Qian-xi. Key factors affecting fusion temperature of coal ash[J]. Coal Chemical Industry, 2007, 35(3): 1-5.)
-
[18]
[18] KAHRAMANAC H, BOS F, REIFENSTEIN A, COIN C D A. Application of a new ash fusion test to Theodore coals[J]. Fuel , 1998, 77(10): 1005-1011.
-
[19]
[19] 戴爱军. 煤灰成分对灰熔融性影响研究[J]. 洁净煤技术, 2007, 13(5): 23-26. (DAI Ai-jun. Reserch on influence of ash components in coal ash on ash fusibility[J]. Clean Coal Technology, 2007, 13(5): 23-26.)
-
[20]
[20] BALE C W, BELISLE E, CHARTRAND P, DECTEROV S A, ERIKSSON G, HACK K, JUNG I-H, KANG Y-B, MELANCON J, PELTON A D, ROBELIN C, PETERSEN S. FactSage thermochemical software and databases: Recent developments[J]. CALPHAD: Comput Coupling Phase Diagrams Thermochem, 2009, 33(2): 295-311.
-
[21]
[21] JAK E. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package[J]. Fuel, 2002, 81(13): 1655-1668.
-
[1]
-
-
-
[1]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[2]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[3]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[4]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[5]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[6]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[7]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
-
[8]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[10]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[11]
Wenwei Zhang , Yanping Ren , Weihong Li , Xiaohang Qiu , Mei Shi , Yuwen Liu , Zhilin Wang . Suggestions on Teaching Contents and Requirements of Inorganic Chemistry Experiment for Chemistry Majors in Higher Education. University Chemistry, 2025, 40(5): 23-31. doi: 10.12461/PKU.DXHX202405120
-
[12]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[13]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[14]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[15]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[16]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[17]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[18]
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
-
[19]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[20]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(600)
- HTML views(43)