Citation: ZHANG Shu, Mohammad Asadullah, Rosalie Hocking, LIN Jian-ying, LI Chun-zhu. Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(12): 1409-1414. shu

Transformation of chlorine in NaCl-loaded Victorian brown coal during the gasification in steam

  • Received Date: 28 August 2012
    Available Online: 26 September 2012

  • This study is to examine the changes in Cl volatilizations and chemical forms in NaCl-loaded Victorian brown coal during gasification in steam at 800 ℃ using Cl K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The char samples were prepared in a novel one-stage fluidised-bed/fixed-bed quartz reactor at a fast heating rate. The samples were then collected and sealed in an argon-filled bag in order to minimise possible oxidation of char and Cl by air prior to analysis by XANES. Char-steam reactions were found to significantly affect the transformation of Cl, including the possible formation of chlorine-containing organic structures. On the other hand, volatile-char interactions during the gasification appeared to enhance the Cl retention and prevent the formation of organic chlorine compounds in chars.
  • 加载中
    1. [1]

      [1] GLUSKOTER H J. Chlorine in coals of the Illinois basin[J]. Trans Soc Min Eng, 1967, 238(4): 373-379.

    2. [2]

      [2] CASWELL S A, HOLMES I F, SPEARS D A. Total chlorine in coal seam profiles from the South Staffordshire (Cannock) Coalfield[J]. Fuel, 1984, 63(6): 782-787.

    3. [3]

      [3] GOODARZI F. Mineralogy elemental composition and mode of occurrence of elements in Canadian feed-coals[J]. Fuel, 2002, 81(9): 1199-1213.

    4. [4]

      [JP][4] HOWER J C, RILEY J T, THOMAS G A, GRISWOLD T B. Chlorine in Kentucky coals[J]. Coal Qual, 1991, 10(7): 152-158.

    5. [5]

      [5] VASSILEV S V, ESKENAZY G M, VASSILEVA C G. Contents modes of occurrence and origin of chlorine and bromine in coal[J]. Fuel, 2000, 79(8): 903-921.

    6. [6]

      [6] CRESSEY B A, CRESSEY G. Preliminary mineralogical investigation of Leicestershire low-rank coal[J]. Int J Coal Geol, 1998, 10(2): 177-191.

    7. [7]

      [JP][7] LEE R J, HUGGINS F E, HUFFMAN G P. Correlated Mossbauer-SEM studies of coal mineralogy[J]. Scan Electron Microsc, 1978, 1(5): 561-568.

    8. [8]

      [8] DAYBELL G N, PRINGLE W J S. The mode of occurrence of chlorine in coal[J]. Fuel, 1978, 37(3): 283-292.

    9. [9]

      [9] REYNOLDS F M. The occurrence of vanadium, chromium, and other minor unusual elements in certain coals[J]. J Soc Chem Ind, 1948, 67(9): 341-345.

    10. [10]

      [10] OAKEY J E, MINCHENER A J, HODGES N J. The use of highchlorine coals in industrial boilers[J]. J Inst Energy, 1991, 64(3): 3-11.

    11. [11]

      [11] DEMIR I, CHOU C L, CHAVEN C. Abundances and leachabilities of sodium and chlorine in lithotypes of Illinois Basin coals[C]// Chyi L L. Recent Advances in Coal Geochemistry. Colorado: Geological Society of America, 1990: 73-85.

    12. [12]

      [12] LI W, LU H , CHEN H , LI B . The volatilization behavior of chlorine in coal during its pyrolysis and CO2-gasification in a fluidized bed reactor[J]. Fuel, 2005, 84(14/15): 1874-1878.

    13. [13]

      [13] HUGGINS F E, HUFFMAN G P. Chlorine in coal: An XAFS spectroscopic investigation[J]. Fuel, 1995, 74(4): 556-569.

    14. [14]

      [14] YUDOVICH Y E, KETRIS M P. Chlorine in coal: A review[J]. Int J Coal Geol, 2006, 67(1/2): 127-144.

    15. [15]

      [15] QUYN D M, WU H, LI C-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal: Part I Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149.

    16. [16]

      [16] LI X, HAYASHI J I, LI C-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal: Part VII Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.

    17. [17]

      [17] LI X, LI C-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal: Part VIII Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11): 1518-1525.

    18. [18]

      [18] LI X, HAYASHI J I, LI C-Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel , 2006, 85(12/13): 1700-1707.

    19. [19]

      [19] LI X, LI C-Z. FT-Raman spectroscopic characterisation of chars from the pyrolysis of coals of varying rank[J]. J Fuel Chem Technol, 2005, 33(4): 385-390.

    20. [20]

      [20] SRINIVASACHAR S, HELBLE J J, HAM D O, DOMAZETIS G A. Kinetic description of vapor phase alkali transformations in combustion systems[J]. Prog Energy Combust Sci, 1990, 16(4): 303-309.

    21. [21]

      [21] MANZOORI A R, AGARWAL P K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals[J]. Fuel, 1992, 71(5): 513-522.

    22. [22]

      [22] CASWELL S A, HOLMES I F, SPEARS D A. Water-soluble chlorine and associated major cations from the coal and mudrocks of the Cannock and North Staffordshire coalfields[J]. Fuel, 1984, 63(6): 774-781.

    23. [23]

      [23] PEARCE W C, HILL J W F. The mode of occurrence and combustion characteristics of chlorine in British coal[J]. Prog Energy Combust Sci, 1986, 12(2): 117-162.

    24. [24]

      [24] GLUSKOTER H J, RUCH R R. Chlorine and sodium in Illinois coals as determined by neutron activation analyses[J]. Fuel, 1971, 50(1): 65-76.

    25. [25]

      [JP][25] DANN T E, CHUNG S C, HUANG L J, JUANG J M, CHEN C L, TSANG K L. A high performance double-crystal monochromator soft X-ray beamline[J]. J Synchrotron Rad, 1998, 5(3): 664-666.

    26. [26]

      [26] TENDERHOLT A, HEDMAN B, HODGSON K O. PySpline: A modern cross-platform program for the processing of raw averaged XAS edge and EXAFS data[C]// Proceedings of 13th International Conference on XAFS, Stanford, California, 2006: 105-107.

    27. [27]

      [27] ZHANG S, ASADULLAH M, HOCKING R, LIN J Y, LI C-Z. Investigation of chlorine transformation during the pyrolysis of NaCl-loaded Victorian brown coal using XANES[C]// Engineering Our Future: Are we up to the Challenge (Chemeca), Burswood Entertainment Complex,Barton, ACT, 2009: 27-30.

    28. [28]

      [28] ZHANG S, HAYASHI J I, LI C-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal: Part IX Effects of volatile-char interactions on char-H2O and char-O2 reactivities[J]. Fuel, 2011, 90(4): 1655-1661.

    29. [29]

      [29] BAYARSAIKHAN B, SONOYAMA N, HOSOKAI S, SHIMADA T, HAYASHI J I, LI C-Z. Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal[J]. Fuel, 2006, 85(3): 340-349.

    30. [30]

      [30] ZHANG S, MIN Z, TAY H L, ASADULLAH M, LI C-Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011, 90(4): 1529-1535.

  • 加载中
    1. [1]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    2. [2]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    3. [3]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    4. [4]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    5. [5]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    6. [6]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    7. [7]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    8. [8]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    9. [9]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    10. [10]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    11. [11]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    12. [12]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    13. [13]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

    14. [14]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    15. [15]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    16. [16]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    17. [17]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    18. [18]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

Metrics
  • PDF Downloads(0)
  • Abstract views(328)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return