Citation: XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1397-1402. shu

Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation

  • Corresponding author: XU Hui-yuan, 
  • Received Date: 27 March 2012
    Available Online: 4 May 2012

    Fund Project: 宜宾学院博士科研启动基金(2010B12)。 (2010B12)

  • Series of nanosize gold catalysts supported by three kinds of silica with different structures were prepared by deposition-precipitation.The CO oxidation was utilized as a probe.The impacts of silica on the structure and catalytic activity were characterized by low-temperature N2 adsorption/desoprtion,X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),and transmission electron microscope (TEM).The result turns out that the relationship between the gold nanopaticle size and the support’s structure does exist.The higher surface area and the smaller pore size of the silica support corresponding to a smaller gold nanoparticle size and higher activity of CO oxidation.The total CO conversion under 18 000 mL/(h·gcat) with gas ratio of v(CO)/v(O2)/v(Ar)=1/21/78 is 560 K.
  • 加载中
    1. [1]

      [1] XIE X-W, LI Y, LIU Z-Q, HARUTA M, SHEN W-J.Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J].Nature, 2009, 458(7239): 746-749.

    2. [2]

      [2] CAO J-L, WANG Y, YU X-L, WANG S-R, WU S-H, YUAN Z-Y.Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation[J].Appl Catal B, 2008, 79(1): 26-34.

    3. [3]

      [3] OH S-H, HOFLUND G B.Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladiumoxide powders [J].J Catal, 2007, 245(1): 35-44.

    4. [4]

      [4] 王桂英, 廉红蕾, 周文辉, 张文祥, 蒋大振, 吴通好. 氯离子含量对Au/ZnO 催化剂常温CO 氧化性能的影响[J]. 燃料化学学报, 2001, 29(8): 116-118. (WANG Gui-ying, LIAN Hong-lei, ZHOU Wen-hui, ZHANG Wen-xiang, JIANG Da-zhen, WU Tong-hao. Effect of Cl on the performance of CO oxidation over Au/ZnO catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29(8): 116-118.)

    5. [5]

      [5] HARUTA M, YAMADA N, KOBAYASHI T, IIJIMA S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115(2): 301-309.

    6. [6]

      [6] XU H-Y, LI W-Y, SHANG S-Y, YAN C-R. Influence of MgO contents on silica supported nano-size gold catalyst for carbon monoxide total oxidation [J]. J Nat Gas Chem, 2011, 20(5): 498-502.

    7. [7]

      [7] 董国利, 王建国, 高荫本, 陈诵英. 二氧化钛负载氧化物催化剂上CO 的氧化反应[J]. 燃料化学学报, 2000, 28(1): 1-4. (DONG Guo-li, WANG Jian-guo, GAO Yin-ben, CHEN Song-ying. Catalytic activity of CO oxidation of titania-supported oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2000, 28(1): 1-4.)

    8. [8]

      [8] SOMODI F, BORBÁTH I, HEGED?S M, TOMPOS A, SAJÓI E, SZEGEDI Á, ROJAS S, FIERRO J L G, MARGITFALVI J L. Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation[J]. Appl Catal A, 2008, 347(2): 216-222.

    9. [9]

      [9] BORE M T, PHAM H N, SWITZER E E, WARD T L, FUKUOKA A, DATYE A K. The role of pore size and structure on the thermal stability of gold nanoparticles with inmesoporous silica[J]. J Phys Chem B, 2005, 109(7): 2873-2880.

    10. [10]

      [10] OKUMURA M, NAKAMURA S, TSUBOTA S, NAKAMURA T, AZUMA M, HARUTA M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for oxidation of CO and of H2[J]. Catal Lett, 1998, 51(1/2): 53-58.

    11. [11]

      [11] OVERBURY S H, ORTIZ S L, ZHU H G, LEE B, AMIRIDIS M D, DAI S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions[J]. Catal Lett, 2004, 95(3/4) 99-106.

    12. [12]

      [12] CHOU J, FRANKLIN N R, BAECK S H, JARAMILLO T F, MCFARLAND E W. Gas-phase catalysis by micelle derived Au nanoparticles on oxide supports[J]. Catal Lett, 2004, 95(3/4): 107-111.

    13. [13]

      [13] BRUNAUER S, EMMETT P H. Chemisorptions of gases on iron synthetic ammonia catalysts[J]. J Am Chem Soc, 1940, 62(7): 1732-1746.

    14. [14]

      [14] ROUQUEROLT J, AUNIR D, FAIRBRIDGE C W, EVEREET D H, HAYNES J H, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Recommendations for the characterization of porous solids[J]. Pure Appl Chern, 1994, 66(8): 1739-1758.

    15. [15]

      [15] 苏继新, 张慎平, 马丽媛, 屈文, 张明博. Au/SBA-15的制备及其催化 CO 氧化反应性能[J]. 催化学报, 2010, 31(7): 839-845. (SU Ji-xin, ZHANG Shen-ping, MA Li-yuan, QU Wen, ZHANG Ming-bo. Preparation of Au/SBA-15 and its catalytic activity for CO oxidation [J]. Chinese Journal of Catalysis, 2010, 31(7): 839-845.)

    16. [16]

      [16] XU H-Y, CHU W-Y, LUO J-J, ZHANG T. Impacts of MgO promoter and preparation procedure on meso-silica supported nano gold catalysts for carbon monoxide total oxidation at low temperature[J]. Chem Eng J, 2011, 170(2/3): 419-423.

    17. [17]

      [17] ZHANG X, SHI H, XU B-Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1, 3-butadiene over Au/ZrO2 catalysts[J]. Angew Chem Int Ed, 2005, 44(43): 7132-7135.

    18. [18]

      [18] BOCCUZZI F, CHIORINO A, MANZOLI M, LU P, AKITA T, ICHIKAWA S, HARUTA M. Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J]. J Catal, 2001, 202(2): 256-267.

    19. [19]

      [19] XU H-Y, CHU W, LUO J-J, LIU M. New Au/FeOx/SiO2 catalysts using deposition-precipitation for low-temperature carbon monoxide oxidation[J]. Catal Commun, 2010, 11(9): 812-815.

    20. [20]

      [20] BOND G C. The effect of the metal to non-metal transition on the activity of gold catalysts[J]. Faraday Discuss, 2011, 152: 277-291.

    21. [21]

      [21] CHANG C-T, LIAW B-J, HUANG C-T, CHEN Y-Z. Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation[J]. Appl Catal A, 2007, 332(2): 216-224.

    22. [22]

      [22] LIM D C, LOPEZ-SALIDO I, DIETSCHE R, BUBEK M, KIM Y D. Size-selectivity in the oxidation behaviors of Au nanoparticles [J]. Angew Chem Int Ed, 2006, 45(15): 2413-2415.

    23. [23]

      [23] QIAN K, HUANG W-X, JIANG Z-Q, SUN H-X. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007, 248(1): 137-141.

  • 加载中
    1. [1]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(0)
  • Abstract views(406)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return