Citation:
XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology,
;2012, 40(11): 1397-1402.
-
Series of nanosize gold catalysts supported by three kinds of silica with different structures were prepared by deposition-precipitation.The CO oxidation was utilized as a probe.The impacts of silica on the structure and catalytic activity were characterized by low-temperature N2 adsorption/desoprtion,X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),and transmission electron microscope (TEM).The result turns out that the relationship between the gold nanopaticle size and the support’s structure does exist.The higher surface area and the smaller pore size of the silica support corresponding to a smaller gold nanoparticle size and higher activity of CO oxidation.The total CO conversion under 18 000 mL/(h·gcat) with gas ratio of v(CO)/v(O2)/v(Ar)=1/21/78 is 560 K.
-
Keywords:
- gold catalyst,
- CO oxidation,
- silica,
- pore structure
-
-
-
[1]
[1] XIE X-W, LI Y, LIU Z-Q, HARUTA M, SHEN W-J.Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J].Nature, 2009, 458(7239): 746-749.
-
[2]
[2] CAO J-L, WANG Y, YU X-L, WANG S-R, WU S-H, YUAN Z-Y.Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation[J].Appl Catal B, 2008, 79(1): 26-34.
-
[3]
[3] OH S-H, HOFLUND G B.Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladiumoxide powders [J].J Catal, 2007, 245(1): 35-44.
-
[4]
[4] 王桂英, 廉红蕾, 周文辉, 张文祥, 蒋大振, 吴通好. 氯离子含量对Au/ZnO 催化剂常温CO 氧化性能的影响[J]. 燃料化学学报, 2001, 29(8): 116-118. (WANG Gui-ying, LIAN Hong-lei, ZHOU Wen-hui, ZHANG Wen-xiang, JIANG Da-zhen, WU Tong-hao. Effect of Cl on the performance of CO oxidation over Au/ZnO catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29(8): 116-118.)
-
[5]
[5] HARUTA M, YAMADA N, KOBAYASHI T, IIJIMA S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115(2): 301-309.
-
[6]
[6] XU H-Y, LI W-Y, SHANG S-Y, YAN C-R. Influence of MgO contents on silica supported nano-size gold catalyst for carbon monoxide total oxidation [J]. J Nat Gas Chem, 2011, 20(5): 498-502.
-
[7]
[7] 董国利, 王建国, 高荫本, 陈诵英. 二氧化钛负载氧化物催化剂上CO 的氧化反应[J]. 燃料化学学报, 2000, 28(1): 1-4. (DONG Guo-li, WANG Jian-guo, GAO Yin-ben, CHEN Song-ying. Catalytic activity of CO oxidation of titania-supported oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2000, 28(1): 1-4.)
-
[8]
[8] SOMODI F, BORBÁTH I, HEGED?S M, TOMPOS A, SAJÓI E, SZEGEDI Á, ROJAS S, FIERRO J L G, MARGITFALVI J L. Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation[J]. Appl Catal A, 2008, 347(2): 216-222.
-
[9]
[9] BORE M T, PHAM H N, SWITZER E E, WARD T L, FUKUOKA A, DATYE A K. The role of pore size and structure on the thermal stability of gold nanoparticles with inmesoporous silica[J]. J Phys Chem B, 2005, 109(7): 2873-2880.
-
[10]
[10] OKUMURA M, NAKAMURA S, TSUBOTA S, NAKAMURA T, AZUMA M, HARUTA M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for oxidation of CO and of H2[J]. Catal Lett, 1998, 51(1/2): 53-58.
-
[11]
[11] OVERBURY S H, ORTIZ S L, ZHU H G, LEE B, AMIRIDIS M D, DAI S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions[J]. Catal Lett, 2004, 95(3/4) 99-106.
-
[12]
[12] CHOU J, FRANKLIN N R, BAECK S H, JARAMILLO T F, MCFARLAND E W. Gas-phase catalysis by micelle derived Au nanoparticles on oxide supports[J]. Catal Lett, 2004, 95(3/4): 107-111.
-
[13]
[13] BRUNAUER S, EMMETT P H. Chemisorptions of gases on iron synthetic ammonia catalysts[J]. J Am Chem Soc, 1940, 62(7): 1732-1746.
-
[14]
[14] ROUQUEROLT J, AUNIR D, FAIRBRIDGE C W, EVEREET D H, HAYNES J H, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Recommendations for the characterization of porous solids[J]. Pure Appl Chern, 1994, 66(8): 1739-1758.
-
[15]
[15] 苏继新, 张慎平, 马丽媛, 屈文, 张明博. Au/SBA-15的制备及其催化 CO 氧化反应性能[J]. 催化学报, 2010, 31(7): 839-845. (SU Ji-xin, ZHANG Shen-ping, MA Li-yuan, QU Wen, ZHANG Ming-bo. Preparation of Au/SBA-15 and its catalytic activity for CO oxidation [J]. Chinese Journal of Catalysis, 2010, 31(7): 839-845.)
-
[16]
[16] XU H-Y, CHU W-Y, LUO J-J, ZHANG T. Impacts of MgO promoter and preparation procedure on meso-silica supported nano gold catalysts for carbon monoxide total oxidation at low temperature[J]. Chem Eng J, 2011, 170(2/3): 419-423.
-
[17]
[17] ZHANG X, SHI H, XU B-Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1, 3-butadiene over Au/ZrO2 catalysts[J]. Angew Chem Int Ed, 2005, 44(43): 7132-7135.
-
[18]
[18] BOCCUZZI F, CHIORINO A, MANZOLI M, LU P, AKITA T, ICHIKAWA S, HARUTA M. Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J]. J Catal, 2001, 202(2): 256-267.
-
[19]
[19] XU H-Y, CHU W, LUO J-J, LIU M. New Au/FeOx/SiO2 catalysts using deposition-precipitation for low-temperature carbon monoxide oxidation[J]. Catal Commun, 2010, 11(9): 812-815.
-
[20]
[20] BOND G C. The effect of the metal to non-metal transition on the activity of gold catalysts[J]. Faraday Discuss, 2011, 152: 277-291.
-
[21]
[21] CHANG C-T, LIAW B-J, HUANG C-T, CHEN Y-Z. Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation[J]. Appl Catal A, 2007, 332(2): 216-224.
-
[22]
[22] LIM D C, LOPEZ-SALIDO I, DIETSCHE R, BUBEK M, KIM Y D. Size-selectivity in the oxidation behaviors of Au nanoparticles [J]. Angew Chem Int Ed, 2006, 45(15): 2413-2415.
-
[23]
[23] QIAN K, HUANG W-X, JIANG Z-Q, SUN H-X. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007, 248(1): 137-141.
-
[1]
-
-
-
[1]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[2]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[6]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[7]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[8]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[9]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[10]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[11]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[12]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[13]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[14]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[15]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[20]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(406)
- HTML views(26)