Citation: YU Yan-ke, HE Chi, CHEN Jin-sheng, MENG Xiao-ran. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1359-1365. shu

Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant

  • Corresponding author: CHEN Jin-sheng, 
  • Received Date: 31 May 2012
    Available Online: 3 August 2012

    Fund Project: 宁波市科技创新团队项目(201182001) (201182001) 福建省自然科学基金面上项目(2011J01060)。 (2011J01060)

  • The fresh and deactivated Selective Catalytic Reduction (SCR) catalysts used in a coal fired power plant were studied in a fixed bed reactor. The physical-chemical properties of the catalysts were characterized by means of SEM-EDX, XRF, XPS, N2 adsorption/desorption, FT-IR, XRD and TG. The results showed that the used catalyst was seriously deactivated. The NOx removal efficiency and the specific surface area of the used catalyst (35.0%, 1.05 m2/g) were obviously less than those of the fresh catalyst (88.2%, 72.50 m2/g). The V5+ content in the deactivated catalyst was increased from 17.4% to 32.2% compared with the fresh one, and large quantities of Al2(SO4)3 can be found over the surface of the deactivated catalyst. The results of SEM and XRD showed that the thermal sintering occurred in the deactivated catalyst. Generally, the V2O5-WO3/TiO2 catalyst deactivation can be interpreted by the valence change of V atoms, thermal sintering and aluminum sulfate formation over catalyst surface.
  • 加载中
    1. [1]

      [1] 中华人民共和国环境保护部. 2010年环境统计年报[DB/OL]. http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/ t20120118_222725. htm, 2012-5-25. (Ministry of Environmental Protection of the People’s Republic of China. 2010 Annual statistics report on environment in China[DB/OL]. http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t20120118_222725.htm, 2012 -5-25)

    2. [2]

      [2] 陈进生. 火电厂烟气脱硝技术——选择性催化还原法[M]. 北京: 中国电力出版社, 2008. (CHEN Jin-sheng. The de-NOx technology in the power plant——Selective catalytic reduction[M]. Beijing: China Electric Power Press, 2008.)

    3. [3]

      [3] 云端, 宋蔷, 姚强. V2O5-WO3/TiO2 SCR催化剂的失活机理及分析[J]. 煤炭转化, 2009, 32(1): 91-96. (YUN Duan, SONG Qiang, YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Conversion, 2009, 32(1): 91-96.)

    4. [4]

      [4] 云端, 邓斯理, 宋蔷, 姚强. V2O5-WO3/TiO2系SCR催化剂的钾中毒及再生方法[J]. 环境科学研究, 2009, 22(6): 730-735. (YUN Duan, DENG Si-li, SONG Qiang,YAO Qaing. Potassium deactivation and regeneration method of V2O5-WO3/TiO2 SCR catalyst[J]. Research of Environmental Sciences, 2009, 22(6): 730-735.)

    5. [5]

      [5] 沈伯雄, 熊丽仙, 刘亭, 王静, 田晓娟. 纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J]. 燃料化学学报, 2010, 38(1): 85-90. (SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 85-90.)

    6. [6]

      [6] KAMATA H,TAKAHASHI K,ODENBRAND C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5 (WO3)/TiO2 commercial selective catalytic reduction catalyst[J]. J Mol Catal A, 1999, 139(2/3):189-198.

    7. [7]

      [7] 姜烨, 高翔, 杜学森, 毛剑宏, 骆仲泱, 岑可法. 钾盐对V2O5/TiO2催化剂NH3选择性催化还原 NO 反应的影响[J]. 中国电机工程学报, 2008, 28(35):21-26. (JIANG Ye, GAO Xiang, DU Xue-sen, MAO Jian-hong, LUO Zhong-yang, CEN Ke-fa. Effects of potassium salts on selective catalytic reduction of NO with NH3 over V2O5/TiO2 catalysts[J]. Proceedings of the CSEE, 2008, 28(35): 21-26.)

    8. [8]

      [8] ZHENG Y, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B, 2005, 60(3): 253-264.

    9. [9]

      [9] 商雪松, 陈进生, 赵金平, 张福旺, 徐亚, 徐琪. SCR脱硝催化剂失活及其原因研究[J]. 燃料化学学报, 2011, 39(6): 465-470. (SHAN Xue-song, CHEN Jin-sheng, ZHAO Jin-ping, ZHANG Fu-wang, XU Ya, XU Qi. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 465-470.

    10. [10]

      [10] LARESE C, GALISTEO F C, GRANADOS M L, MARISCAL R, FIERRO J L G, FURIÓ M, RUIZ R F. Deactivation of real three way catalysts by CePO4 formation[J]. Appl Catal B, 2003, 40(4): 302-317.

    11. [11]

      [11] NOVA I, ACQUAL D, LIETTI L, GIAMELLO E, FORZATTI P. Study of thermal deactivation of a de-NOx commercial catalyst[J]. Appl Catal B, 2001, 35(1): 31-42.

    12. [12]

      [12] 张汝松, 李志国, 张雷. 选择性催化还原脱硝催化剂生产技术[J]. 工业催化, 2011, 19(8): 7-10. (ZHANG Ru-song, LI Zhi-guo, ZHANG Lei. Production technology of SCR DeNOx catalysts[J]. Industrial Catalysis, 2011, 19(8): 7-10.)

    13. [13]

      [13] PAGANINI M C, ACQUA L D, GIAMELLO E, LIETTI L, FORZATTI P, BUSCA G. An EPR study of the surface chemistry of the V2O5-WO3/TiO2 catalyst: Redox behaviour and state of V(IV)[J]. J Catal, 1997, 166(2):195-205.

    14. [14]

      [14] 王幸宜.催化剂表征[M]. 上海: 华东理工大学出版社, 2008: 23-30. (WANG Xing-yi. The characterizations of catalyst[M]. Shanghai: East China University of Science and Technology Press, 2008: 23-30.)

    15. [15]

      [15] HUANG Z, ZHU Z, LIU Z, LIU Q.Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J]. J Catal, 2003, 214(2): 213-219.

    16. [16]

      [16] STREGE J R, ZYGARLICKE C J, FOLKEDAHL B C, MCCOLLOR D P. SCR deactivation in a full-scale cofired utility boiler[J]. Fuel, 2008, 87(7): 1341-1347.

    17. [17]

      [17] CROCKER C R, BENSON S A, LAUMB J D. SCR catalyst blinding due to sodium and calcium sulfate formation[J]. Prep Pap Am Chem Soc Div Fuel Chem, 2004, 49(1): 169-170.

    18. [18]

      [18] NAM I S, ELDRIDGE J W, KITTRELL J. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia[J]. Ind Eng Chem Prod Res Dev, 1986, 25(2): 192-197.

    19. [19]

      [19] SOH B W,NAM I S. Effect of support morphology on the sulfur tolerance of V2O5/Al2O3 catalyst for the reduction of NO by NH3[J]. Ind Eng Chem Res, 2003, 42(13): 2975-2986.

    20. [20]

      [20] MOWERY D L, McCORMICK R L. Deactivation of alumina supported and unsupported PdO methane oxidation catalyst: The effect of water on sulfate poisoning[J]. Appl Catal B, 2001, 34(4): 287-297.

    21. [21]

      [21] CABELLO GALISTEO F, LARESE C, MARISCAL R, LÓPEZ GRANADOS M, FIERRO J L G, FERNÁNDEZ-RUIZ R, FURIO M. Deactivation on vehicle-aged diesel oxidation catalysts[J]. Top Catal, 2004, 30(1): 451-456.

    22. [22]

      [22] YU T C, SHAW H. The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts[J]. Appl Catal B, 1998, 18(1/2): 105-114.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(488)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return