Citation: SONG Hua, SONG Hua-lin, CUI Xue-han, ZHANG Xu. Effect of Pd content on the catalytic performance of SO42-/ZrO2-WO3 solid superacid in pentane isomerization[J]. Journal of Fuel Chemistry and Technology, ;2012, 40(11): 1346-1352. shu

Effect of Pd content on the catalytic performance of SO42-/ZrO2-WO3 solid superacid in pentane isomerization

  • Corresponding author: SONG Hua,  SONG Hua-lin, 
  • Received Date: 20 April 2012
    Available Online: 5 July 2012

    Fund Project: 中国石油天然气股份有限公司科技风险创新基金(07-06D-01-04-03-02)。 (07-06D-01-04-03-02)

  • Pd-SO42-/ZrO2-WO3 solid superacid catalysts were prepared and characterized by XRD, FT-IR, TPR, XPS, BET and TG-DTA; the effect of Pd content on its catalytic performance in n-pentane isomerization was investigated. The results showed that Pd can reduce the reduction temperature, increase the decomposition temperature of SO42- and therefore improve the thermostability of the Pd-SO42-/ZrO2-WO3 catalysts. Pd-SO42-/ZrO2-WO3 with a Pd mass fraction of 0.05% exhibits the highest catalytic activity for isomerization; over it under 260℃, 2.0 MPa, mass hourly space velocity of 1.0 h-1, and H2/n-pentane molar ration of 4.0, the conversion of n-pentane and the yield of liquid products are 40.1% and 93.9%, respectively.
  • 加载中
    1. [1]

      [1] TIAN G, XU Y, XU Z, TIAN Z, LIN L. Effect of aluminum on the mechanical stress stability of WOx/ZrO2 superacid[J]. Chinese Journal of Catalysis, 2008, 29(5): 415-417.

    2. [2]

      [2] LAOSIRIPOJANA N, KIATKITTIPONG W, SUTTHISRIPOK W, ASSABUMRUNGRAT S. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts[J]. Bioresour Technol, 2010, 101(21): 8416-8423.

    3. [3]

      [3] SHU Q, ZHANG Q, XU G, NAWAZ Z, WANG D, WANG J. Synthesis of biodiesel from cottonseed oil and methanol using a carbonbased solid acid catalyst[J]. Fuel Process Technol, 2009, 90(7/8): 1002-1008.

    4. [4]

      [4] 吴燕妮, 郭海福, 崔秀兰, 舒华. Sm2O3改性对S2O82-/ZrO2-SiO2固体超强酸催化剂性能的影响[J]. 化学研究与应用, 2005, 17(3): 400-402. (WU Yan-ni, GUO Hai-fu, CUI Xiu-lan, SHU Hua. Effect of the Sm2O3 on the performance of solid superacid S2O82-/ZrO2-SiO2[J]. Chemical Research and Application, 2005, 17(3): 400-402.)

    5. [5]

      [5] 宋华, 董鹏飞, 张旭. Al含量对Pt-SO42-/ZrO2-Al2O3固体超强酸催化正戊烷异构化性能的影响[J]. 物理化学学报, 2010, 26(8): 2229-2234. (SONG Hua, DONG Peng-fei, ZHANG Xu. Effect of Al content on the n-pentane isomerization of the solid superacid Pt-SO42-/ZrO2-Al2O3[J]. Acta Physico-Chimica Sinica, 2010, 26(8): 2229-2234.)

    6. [6]

      [6] 宋华, 董鹏飞, 张旭. Al含量对Pt-S2O82-/ZrO2-Al2O3固体超强酸催化剂异构化性能的影响[J]. 高等学校化学学报, 2010, 31(7): 1426-1430. (SONG Hua, DONG Peng-fei, ZHANG Xu. Effect of Al contents on the isomerization performance of solid superacid Pt-S2O82-/ZrO2-Al2O3[J]. Chemical Research in Chinese Universities, 2010, 31(7): 1426-1430.)

    7. [7]

      [7] 宋华, 董鹏飞, 石洋. Pt含量及活化温度对固体超强酸催化剂异构化性能的影响[J]. 高等学校化学学报, 2011, 32(2): 355-360. (SONG Hua, DONG Peng-fei, SHI Yang. Effects of Pt contents and activation temperature on the isomerization performance over solid superacid Pt-S2O82-/ZrO2-Al2O3[J]. Chemical Research in Chinese Universities, 2011, 32(2): 355-360.)

    8. [8]

      [8] 宋华, 张旭, 梁宝兴. W含量对固体超强酸催化剂Pd-SO42-/ZrO2-WO3异构化性能的影响[J]. 燃料化学学报, 2012, 40(4):487-493 (SONG Hua, ZHANG Xu, LIANG Bao-xing. Effect of W contents on the isomerization performance of solid superacid Pd-SO42-/ZrO2-WO3 [J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 487-493.)

    9. [9]

      [9] KLOSE B S, JENTOFT R E., HAHN A, RESSLER T, KRÖHNERTJ, WRABETZ S, YANG X, JENTOFT F C. Mechanical stress induced activity and phase composition changes in sulfated zirconia catalysts[J]. J Catal, 2003, 217(2): 487-490.

    10. [10]

      [10] 井立强, 蔡伟民, 孙晓君, 侯海鸽, 徐自力, 杜尧国. Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J]. 催化学报, 2002, 23(4): 336-340. (JING Li-qiang, CAI Wei-min, SUN Xiao-jun, HOU Hai-ge, XU Zi-li, DU Yao-guo. Preparatian and characterization of Pd/ZnO and Ag/ZnO composite nanoparticles and their photocatalytic activity[J]. Chinese Journal of Catalysis, 2002, 23(4): 336-340.)

    11. [11]

      [11] GUO H-F, YAN P, HAO X-Y, WANG Z-Z. Influences of introducing Al on the solid super acid SO42-/SnO2[J]. Mater Chem Phys, 2008, 112(3): 1065-1068.

    12. [12]

      [12] VIJAY S, WOLF E E, MILLER J T, KROPF A J. A highly active and stable platinum-modified sulfated zirconia catalyst: Part 2. EXAFS studies of the effect of pretreatment on the state of platinum[J]. Appl Catal A, 2004, 264(1): 125-130.

    13. [13]

      [13] PORTER J, DEERE D, PICKUP R. Fluorescent probes and flow cytometry: New insights into environmental bacteriology[J]. Cytometry, 1996, 23(2): 91-96.

    14. [14]

      [14] FERRER V, MORONTA A, SÁNCHEZ J, SOLANO R, BERNAL S, FINOLA D. Effect of the reduction temperature on the catalytic activity of Pd-supported catalysts[J]. Catal Today, 2005, 107~108(1): 487-492.

    15. [15]

      [15] 俞铁铭, 周仁贤, 唐中民, 郑小明. 微量铂、钯对Cr/ZrO2催化剂结构与性能的影响[J]. 石油化工, 1999, 28(7): 449-451. (YU Tie-ming, ZHOU Ren-xian, TANG Zhong-min, ZHENG Xiao-ming. Effects of platinum or palladium on structure and properties of Cr/ZrO2 catalyst[J]. Petrochemical Technology, 1999, 28(7): 449-451.)

    16. [16]

      [16] 郑小明, 吕伯升, 洪情美, 金唯军. Pt/HM, Pd/HM催化剂上CO氧化反应活性和动力学研究[J]. 高等学校化学学报,1991, 12(3): 381-385. (ZHENG Xiao-ming, LV Sheng-bo, HONG Qing-mei, JIN Wei-jun. Activity and kinctics study on Pt/HM, Pd/HM catalysts for oxidation of CO[J]. Chemical Reaserch in Chinese Universities, 1991, 12(3): 381-385.)

    17. [17]

      [17] 郑小明, 顾越鹏, 金松寿. Pt/HM和Pd/HM催化剂表面氧的恢复与供出活化能测定[J]. 物理化学学报, 1991, 7(1): 125-128 (ZHENG Xiao-ming, GU Yue-peng, JIN Song-shou. Measurement of the activation energy of oxygen offering and reproducing on Pt/HM, Pd/HM Catalysts[J]. Acta Physico-Chimica Sinica, 1991, 7(1): 125-128.)

    18. [18]

      [18] 周仁贤, 周烈华, 朱波, 郑小明. 掺杂对Pd/Al2O3催化剂物相结构及表面氧性质的影响[J]. 物理化学学报, 1995, 11(1): 20-25. (ZHOU Ren-xian, ZHOU Lie-hua, ZHU Bo, ZHENG Xiao-ming. Effect of ZrO2 on support structure and surface oxygen property of Pd/Al2O3[J]. Acta Physico-Chimica Sinica, 1995, 11(1): 20-25.)

    19. [19]

      [19] 丁春黎, 朱永娟, 顾薇. 对浸渍法制备Pd/C催化剂表面积影响因素的讨论[J]. 吉林工学院学报, 2001, 22(1): 4-6. (DING Chun-li, ZHU Yong-juan, GU Wei. A discussion on the influence of surface area of the Pd/C catalyst prepared by soaking method[J]. Journal of Jilin Institute of Technology, 2001, 22(1): 4-6.)

    20. [20]

      [20] 祁伟. Pd/Al2O3催化剂的合成和表征[J]. 德州学院学报, 2007, 23(6): 49-51. (QI Wei. The synthesis and characterization of catalysts Pd/Al2O3[J]. Journal of Dezhou University, 2007, 23(6): 49-51.)

    21. [21]

      [21] 黄宁康. 离子束轰击的ZrO2-8wt%Y2O3薄膜的XPS分析[J]. 功能材料, 1992, 23(2): 121-128. (HUANG Ning-kang. XPS investigation of ZrO2-8wt%Y2O3 film bombard with ion beam[J]. Journal of Functional Materials, 1992, 23(2): 121-128.)

    22. [22]

      [22] 熊玉华, 顾为, 尉秀英, 苑鹏, 秦光荣. ZrVFe吸气剂激活过程及其机理[J]. 中国有色金属学报, 2008, 18(7): 1358-1363. (XIONG Yu-hua, GU Wei, WEI Xiu-ying, YUAN Peng, QIN Guang-rong. Activation process and mechanism of ZrVFe getter[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(7): 1358-1363.)

    23. [23]

      [23] CHEN X-R, DU Y-Q, CHEN C-L, XU N-P, MOU C-Y. Highly active and stable n-pentane isomerization catalystswithout noble metal containing:Al-or Ga-Promoted tungstated zirconia[J]. Catal Lett,2006,111(3): 187-193.

    24. [24]

      [24] 战瑞瑞, 张荣昌. 稀土改性纳米固体超强酸SO42-/ Fe2O3-CeO2-SiO2催化剂的研究[J]. 东北师大学报(自然科学版), 2008, 40(3): 80-83. (ZHAN Rui-rui, ZHANG Rong-chang. Research of nanosolid superacid catalyst of rare earth modified SO42-/Fe2O3-CeO2-SiO2[J]. Journal of Northeast Normal University Natural Sciencr Edition, 2008, 40(3): 80-83.)

    25. [25]

      [25] BELANDRIA L, MARIN-ASTORGAL N, GARCIA E, SOSA E, AGUIRRE F, VILLARROELl M, UZCATEGUI A, IMBERT F. Catalytic activity of Pt and Pd catalysts supported on HWP/HMS in the selective[J]. Catal Today, 2011, 172(1): 2-7.

    26. [26]

      [26] 王刚, 刘全杰, 贾立明, 徐会青, 韩崇仁, 李灿. 负载Pd的分子筛催化剂上烷烃的异构化反应[J]. 石油化工, 2006, 35(5): 420-424. (WANG Gang, LIU Quan-jie, JIA Li-ming, XU Hui-qing, HAN Chong-ren, LI Can. Isomerization of alkane on molecular sieves catalyst loaded with palladium[J]. Petrochemical Technology, 2006, 35(5): 420-424.)

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return